Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum goes massive

20.07.2009
An astrophysics experiment in America has demonstrated how fundamental research in one subject area can have a profound effect on work in another as the instruments used for the Laser Interferometer Gravitational-Wave Observatory (LIGO) pave the way for quantum experiments on a macroscopic scale.

The work is reported in a research article published today, Thursday, 16 July, in New Journal of Physics (co-owned by the Institute of Physics and German Physical Society). It can be found at http://stacks.iop.org/NJP/11/073032.

LIGO is a huge experiment, funded mainly by the U.S. National Science Foundation and involving more than 600 astrophysicists worldwide, undertaken to detect gravitational waves and thereby help us monitor space through another valuable set of lenses - gravitational radiation.

By measuring tiny motions of test masses caused by passing gravitational waves, LIGO expects to directly detect this radiation, thought to stem from exotic phenomena in space such as the collisions of neutron stars and black holes, and supernovae.

Laser light is used to monitor relative displacements of interferometer mirrors, which are suspended as pendulums to act as quasi-free test masses. Since the effect of gravitational waves is expected to be very small, LIGO detectors are sensitive enough to measure displacements smaller than one-thousandth the size of a proton for mirrors that are 4 km apart.

In different frequency bands, the sensitivity of the LIGO instruments are limited by noise arising from the quantum nature of the laser light, or by thermal noise arising from the thermal energy of the mirrors. Observing quantum mechanical behaviour of the LIGO mirrors requires reducing the thermal noise, which may be achieved by cooling the interferometer mirrors with techniques similar to laser cooling of atoms. However, the temperature must be brought extremely close to absolute zero (0 Kelvin, or about -273 degrees Celsius).

While absolute zero is impossible to achieve, scientists working on LIGO have used both a frictionless damping force and a magnetic restoring force to cool the mirror oscillator to about 1 millionth of a degree above absolute zero. The frictionless damping force removes energy from the mirror while the restoring force increases the frequency of the oscillator in order to avoid disturbances caused by local ground motion.

While the effort to detect gravitational waves is ongoing, the researchers have now used the LIGO apparatus to observe the oscillations of a 2.7 kg pendulum mode at a level close to its quantum ground state. The results suggest that it should be possible for quantum physicists to use the apparatus to observe quantum mechanical behaviour, such as quantum entanglement, at mass scales previously thought impractical.

While there is still work to go in strengthening the laser and reducing excess noise in the detectors, LIGO scientists Thomas Corbitt and Nergis Mavalvala of the Massachusetts Institute of Technology echo the optimism of the research article, which concludes that "the present work, reaching Microkelvin temperatures, provides evidence that interferometric gravitational wave detectors, designed as sensitive probes of general relativity and astrophysical phenomena, can also become sensitive probes of macroscopic quantum mechanics."

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>