Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum magnets moving along

13.03.2013
LMU/MPQ-team of scientists observes coherent propagation of a single spin impurity in a chain of ultracold atoms.

Many discoveries in physics came as a big surprise – for example the phenomenon, that some materials loose almost all their electrical resistance at low temperatures, or that others become superconductors at unexpectedly high temperatures.


Figure 1: Illustration of the propagation of the spin impurity (red) through a chain of atoms with initially opposite spin.

Graphics: LMU, Quantum Many Body Systems Division

In the past it was mainly due to theoreticians to develop models explaining these unusual properties. Unfortunately it is not possible to have a direct look into a solid state crystal and follow up the motion of charge carriers as this process happens at extremely short time and length scales.

A team around Professor Immanuel Bloch (Chair for Experimental Physics at the Ludwig-Maximilians-Universität Munich and Director at MPQ) has now observed the coherent propagation of single spin excitations in an ultracold quantum gas of strongly correlated atoms (Nature Physics, Advance Online Publication, 24 February 2013). This is one of the most fundamental processes in the magnetism of quantum systems.

In close collaboration with theoretical physicists from the Ludwig-Maximilians-Universität Munich and the University of Geneva the scientists were able to demonstrate that the propagation of the spin wave in less strongly correlated systems is being slowed down by the emergence of quasi-particles, so-called polarons.

Properties of condensed matter such as magnetism, electrical conductivity, or superconductivity are the result of the behaviour of electrons in the periodic crystal of the solid. In this respect, the intrinsic angular momentum, i.e. the spin of the electrons, is playing a key role. For example, the high-temperature conductivity exhibited by a class of cuprates is thought to go back to the spin coupling of strongly correlated electrons. Ultracold atoms in an optical lattice are ideally suited to investigate such quantum magnetic phenomena under controlled experimental conditions.

The experiment starts with cooling rubidium atoms down to temperatures near absolute zero. The ensemble is then kept in a light field which divides it into several parallel one-dimensional tubes along which the atoms are allowed to move. Now the tubes are superimposed with yet another light field, a standing laser light wave. By the periodic sequence of dark and bright areas an optical lattice builds up in which each site is occupied with exactly one atom fixed to its position. This highly ordered state is called a Mott insulator (named after the British physicist Sir Neville Mott). After all, an array of several chains of atoms each containing around 15 atoms is formed.

The atoms in the optical lattice take the role of the electrons in a solid state crystal. They are in a similar way characterized by an intrinsic angular momentum (a spin). However, in this case the scientists have control over the spins which can – as if they were little magnetic needles – align in two opposite directions. In the beginning, all spins are pointing into the same direction. Then, one single atom in the centre of each chain is picked out by a laser beam, and its spin is flipped by irradiating microwave pulses. Afterwards the motion of this deterministically generated spin impurity through the chain is followed up (see figure 1).

An imaging technique developed in the group makes it possible to visualize each atom on its particular lattice site with very high resolution. Using this method the position of the spin impurity can be precisely determined for various evolution times. This measurement is performed on all atomic chains at the same time. The emerging distributions exhibit a structure that is characteristic of an interference pattern, as it is expected from the interference of coherent waves. “Our model describes the process of spin propagation by a mechanism called ‘correlated super exchange’,” Dr. Christian Groß explains, scientist at the experiment. “The same instance the spin impurity moves one site to the right the neighbouring atom takes its place. As this exchange takes place in the opposite direction at the same time and with the same probability the observed interference pattern results. If the system was a classic one only a broadening of the distribution would have been observed over time. Thereby we have proved that the spin wave propagates coherently.”

In the insulating Mott phase the barriers between the lattice sites are very high, and the atoms are tightly bound to their position, except for the case of the correlated super exchange mentioned above. When the height of the barrier, i.e. the intensity of the laser beams, is lowered below a certain threshold, the atoms are allowed by the rules of quantum mechanics to “tunnel” through the barrier and reach a neighbouring site. In this ‘superfluid phase’ the mobility of the atoms is enhanced, however, the motion of the impurity gets slowed down, as was demonstrated in the measurement. “The tunnelling happening everywhere in the lattice increases the complexity of the interaction of the spin impurity with the background atoms,” Dr. Takeshi Fukuhara points out, who works on the experiment as a postdoctoral researcher. “In the end, the interaction is repulsive, creating a hole in the distribution of the background atoms.” On its way through the chain the spin impurity has to drag this hole all along, that way getting kind of heavy. “This is quite similar to passing a crowd on a subway station: it will take a long time since one has to create the necessary space on each step,” Fukuhara says. “The motion of the impurity observed in our experiment is in good agreement with the forming of quasi particles in the lattice, so-called polarons, as they are known from solid state physics.”
The results obtained in this series of measurements are of high interest: on the one hand, the experiments demonstrate the outstanding control of ultracold quantum systems that can be achieved at present. This is a precondition for the simulation of collective solid state excitations, which give, for example, rise to quantum magnetic phenomena. On the other hand the measurements give a direct insight into the propagation of charge carriers and impurities in solid state crystals, which in the end determine the macroscopic properties of materials.
Olivia Meyer-Streng

Original publication:
Takeshi Fukuhara, Adrian Kantian, Manuel Endres, Marc Cheneau, Peter Schauß,
Sebastian Hild, David Bellem, Ulrich Schollwöck, Thierry Giamarchi, Christian Groß, Immanuel Bloch, and Stefan Kuhr
Quantum dynamics of a mobile spin impurity
Nature Physics, Advance Online Publication, 24 February 2013

Contact:
Prof. Dr. Immanuel Bloch
Chair of Quantum Optics, LMU Munich
Schellingstr. 4, 80799 München, and
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 (0) 89 / 32 905 -138
E-mail: immanuel.bloch@mpq.mpg.de

Dr. Christian Groß
Max-Planck-Institute of Quantum Optics
Phone: +49 (0) 89 / 32 905 -713
E-mail: christian.gross@mpq.mpg.de

Dr. Takeshi Fukuhara
Max-Planck-Institute of Quantum Optics
Phone: +49 (0) 89 / 32 905 -677
E-mail: takeshi.fukuhara@mpq.mpg.de

Prof. Dr. Stefan Kuhr
University of Strathclyde
Department of Physics
107 Rottenrow East
Glasgow, U.K.
G4 0NG
Phone: +44 141 548 3364
E-mail: stefan.kuhr@strath.ac.uk

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>