Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond the Quantum Limit

01.04.2010
MPQ-LMU scientists create multi-particle entanglement of atoms in a
Bose Einstein condensate on a microchip.

The microcosm, the realm of quantum physics, is ruled by probability and chance. The behaviour of quantum particles cannot be predicted with certainty but only with certain probabilities given by quantum physics.

This results in a so-called quantum noise, which fundamentally limits the precision of the most refined atomic clocks and interferometers.

The solution to this problem is the use of entangled atomic systems. A break-through has now been achieved by a team around Professor Theodor W. Hänsch and Professor Philipp Treutlein (Ludwig-Maximilians-Universität Munich and Max Planck Institute of Quantum Optics in Garching, Philipp Treutlein is Professor at the Universität Basel since February 2010). For the first time the scientists succeeded in generating multi-particle entanglement on an atom-chip (Nature, Advance Online Publication, DOI: 10.1038/nature08988). This technique opens a way to significantly enhance the precision of chip-based atomic clocks or interferometers and could also form the basis for quantum computers on microchips. The Munich experiments have been carried out in cooperation with theoretical physicists around Dr. Alice Sinatra from the Ecole Normale Supérieure (ENS) in Paris.

Entanglement is one of the most fascinating phenomena of physics. Once two particles are prepared in an entangled state, they loose their individuality and have to be treated as one single system. Whatever happens to one of the particles it will have an instantaneous impact on the other one, independent of the distance between the particles. Already 80 years ago Albert Einstein dubbed this phenomenon which contradicts every intuition 'spooky action at a distance'. Entanglement is a strict consequence of quantum theory, yet it was not before the last decade of the twentieth century that entangled states of atoms could be experimentally generated and verified. This opened up the possibility to not only get a better understanding of this mysterious phenomenon but also to make use of it for technical applications such as communication, metrology and computing.

In the experiment described here the Munich group succeeded for the first time to generate entanglement on an atom chip. An atom chip is a microstructured chip that is able to store and manipulate single atoms or atomic clouds. Atom chips have already shown to be versatile tools, both for the study of fundamental problems of quantum physics and for a number of interesting applications. For instance, a chip-based atomic clock, which is suitable for portable use, has been developed using this technology. However, up to now no method existed to generate entanglement on a chip. And as long as atomic clocks run with atoms that are independent of each other, their precision will be limited by the fundamental quantum noise.

Two years ago the theoretical physicists Alice Sinatra and Li Yun developed, in cooperation with the group of Philipp Treutlein, a concept how to suppress this quantum noise. The experiment starts with trapping a cloud of rubidium atoms on the chip and cooling it down to less than a millionth of a degree above absolute zero. At these temperatures the atoms form a Bose-Einstein condensate (BEC), a new state, in which all the atoms are in the same well-defined quantum state. The rubidium atoms can be described by a so-called spin, which can be oriented either upwards or downwards. The ground state of the atoms in the BEC corresponds to a downwards oriented spin. A microwave pulse which is applied to the BEC now rotates the spins such that each atom is in a superposition of both spin states.

The BEC is then exposed to a state-dependent potential which is exerted by a second microwave field. "Under the influence of this field the atoms are only allowed to collide with atoms of the same spin state. Therefore the dynamic evolution of their states depends on the states of all other atoms. This effect leads to an entanglement of the atoms", explains Max Riedel, doctoral student at the experiment.

In a measurement on a BEC of non-entangled atoms, on average half of the atoms are found in the ground state (spin downwards), the other half in the excited state (spin upwards). "Deviations from this mean value that occur from measurement to measurement, lead to a quantum noise that is evenly distributed among the spin components orthogonal to the mean spin", adds Pascal Böhi, another doctoral student.

In order to investigate the influence of the state-dependent potential on the quantum noise the scientists determined the noise for each spin component using yet another microwave pulse. As they could clearly demonstrate, for one spin component the noise could be "squeezed" below the limit given by the Heisenberg uncertainty relation. From the observed noise reduction the scientists concluded that inside the BEC clusters of at least four atoms are entangled.

Using entangled ensembles of atoms the precision of atomic clocks could be increased significantly. Further applications include highly sensitive atom interferometers for the detection of extremely weak forces and the realisation of a quantum gate, a key element in future quantum computers. But the scientists also hope to get a deeper understanding of the processes that lead to quantum correlations in quantum many body systems.

The experiments were carried out with support from the Deutsche Forschungsgemeinschaft in the framework of the cluster of excellence "Nanosystems Initiative Munich (NIM)" and with support from the European Union in the framework of the project "Atomic Quantum Technologies (AQUTE)". Olivia Meyer-Streng

Original publication:
Atom-chip-based generation of entanglement for quantum metrology
Max F. Riedel, Pascal Böhi, Yun Li, Theodor W. Hänsch, Alice Sinatra, and Philipp Treutlein

Nature (Advance Online Publication, DOI: 10.1038/nature08988, 31 March 2010)

Contact:
Prof. Philipp Treutlein
Max Planck Institute of Quantum Optics
and Ludwig-Maximilians-Universität, Munich, Faculty of Physics
Schellingstr. 4/III, 80799 Munich
Phone: +49 - 89-2180-3937
Fax: +49 - 89-2180-3938
e-mail: treutlein@lmu.de
www.munichatomchip.de
University of Basel, Department of Physics
Klingelbergstrasse 82, CH-4056 Basel
e-mail: philipp.treutlein@unibas.ch
Prof. Theodor W. Hänsch
Chair of Experimental Physics, Ludwig-Maximilians-Universität, Munich
Director, Max Planck Institute of Quantum Optics
Hans-Kopfermann-Strasse 1, 85748 Garching
Phone: +49 - 89 / 32905 702/712
Fax: +49 - 89 / 32905 312
e-mail: t.w.haensch@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de
http://www.munichatomchip.de

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>