Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Light from Diamond and Plastic

08.04.2013
Researchers from Humboldt-Universität zu Berlin and Karlsruhe Institute for Technology (KIT) have developed a simple method to fabricate stable sources of single light quanta. The approach published in the Open Access Journal Scientific Reports of Nature Publishing Group is based on a novel hybrid approach combining two completely different material systems.

On the one side, there are tiny fragments of diamond. Besides carbon diamond contains other atoms as natural impurities. These impurity atoms or so-called colour centres are responsible for the yellow or blue colours of natural diamond.


a) Sketch of the direct laser writing process. A femtosecond laser beam is focussed into the photoresist in order to polymerize well defined 3D structures. (b) Scanning electron micrograph of such a structure after development containing several key photonic elements, such as waveguides, couplers and microdisc resonators. Scale bar is 5 µm. Figure: Oliver Benson


(a) Sketch of the experimental configuration. The excitation spot is scanned over the resonator disc. Photons are detected at both waveguide outputs simultaneously. (b) Photon counts collected at one end of the waveguide while scanning the excitation spot with a second objective. The circle highlights the position of a single NV-centre. Shape distortions are due to non closed-loop piezo-scanning. Scale bar is 5 µm. Figure: Oliver Benson

Due to their very small size of only a few millionths of a millimetre, some of the diamond fragments contained only a single colour centre, which could be excited optically with the help of laser light. The colour centre releases its energy by emission of single quanta of light, or photons, which are thus generated in a controlled way one-by-one.

The researchers now mixed the diamond fragments with a special photo resist. A focussed laser beam irradiating the resist layer induced local polymerisation, i.e. the resist was turned into plastic. In this way it was possible to write nearly arbitrary three-dimensional structures, which contain single diamond fragments with single colour centres. The research team at first fabricated optical waveguides and resonators for efficient collection and routing of the photons emitted from the colour centres.

A major advantage of the new hybrid material system is on the one hand the well-established and cost efficient fabrication method and on the other hand the unlimited stability of operation even at room temperature. The next steps are now to combine the novel structures with other optical instrumentation. The researchers expect that in this way numerous applications in the fields of high-resolution microscopy, optical sensing, or quantum information processing can be realized in a reliable and cost-efficient approach.

Further Information:

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, O. Benson, Scientific Reports 3:1577, 1-5 (2013)

Contact:

Prof. Dr. Oliver Benson
oliver.benson@physik.hu-berlin.de
Weitere Informationen:
http://www.nature.com/srep/2013/130402/srep01577/full/srep01577.html

Constanze Haase | idw
Further information:
http://www.hu-berlin.de

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>