Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Light from Diamond and Plastic

08.04.2013
Researchers from Humboldt-Universität zu Berlin and Karlsruhe Institute for Technology (KIT) have developed a simple method to fabricate stable sources of single light quanta. The approach published in the Open Access Journal Scientific Reports of Nature Publishing Group is based on a novel hybrid approach combining two completely different material systems.

On the one side, there are tiny fragments of diamond. Besides carbon diamond contains other atoms as natural impurities. These impurity atoms or so-called colour centres are responsible for the yellow or blue colours of natural diamond.


a) Sketch of the direct laser writing process. A femtosecond laser beam is focussed into the photoresist in order to polymerize well defined 3D structures. (b) Scanning electron micrograph of such a structure after development containing several key photonic elements, such as waveguides, couplers and microdisc resonators. Scale bar is 5 µm. Figure: Oliver Benson


(a) Sketch of the experimental configuration. The excitation spot is scanned over the resonator disc. Photons are detected at both waveguide outputs simultaneously. (b) Photon counts collected at one end of the waveguide while scanning the excitation spot with a second objective. The circle highlights the position of a single NV-centre. Shape distortions are due to non closed-loop piezo-scanning. Scale bar is 5 µm. Figure: Oliver Benson

Due to their very small size of only a few millionths of a millimetre, some of the diamond fragments contained only a single colour centre, which could be excited optically with the help of laser light. The colour centre releases its energy by emission of single quanta of light, or photons, which are thus generated in a controlled way one-by-one.

The researchers now mixed the diamond fragments with a special photo resist. A focussed laser beam irradiating the resist layer induced local polymerisation, i.e. the resist was turned into plastic. In this way it was possible to write nearly arbitrary three-dimensional structures, which contain single diamond fragments with single colour centres. The research team at first fabricated optical waveguides and resonators for efficient collection and routing of the photons emitted from the colour centres.

A major advantage of the new hybrid material system is on the one hand the well-established and cost efficient fabrication method and on the other hand the unlimited stability of operation even at room temperature. The next steps are now to combine the novel structures with other optical instrumentation. The researchers expect that in this way numerous applications in the fields of high-resolution microscopy, optical sensing, or quantum information processing can be realized in a reliable and cost-efficient approach.

Further Information:

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, O. Benson, Scientific Reports 3:1577, 1-5 (2013)

Contact:

Prof. Dr. Oliver Benson
oliver.benson@physik.hu-berlin.de
Weitere Informationen:
http://www.nature.com/srep/2013/130402/srep01577/full/srep01577.html

Constanze Haase | idw
Further information:
http://www.hu-berlin.de

More articles from Physics and Astronomy:

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>