Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Light from Diamond and Plastic

08.04.2013
Researchers from Humboldt-Universität zu Berlin and Karlsruhe Institute for Technology (KIT) have developed a simple method to fabricate stable sources of single light quanta. The approach published in the Open Access Journal Scientific Reports of Nature Publishing Group is based on a novel hybrid approach combining two completely different material systems.

On the one side, there are tiny fragments of diamond. Besides carbon diamond contains other atoms as natural impurities. These impurity atoms or so-called colour centres are responsible for the yellow or blue colours of natural diamond.


a) Sketch of the direct laser writing process. A femtosecond laser beam is focussed into the photoresist in order to polymerize well defined 3D structures. (b) Scanning electron micrograph of such a structure after development containing several key photonic elements, such as waveguides, couplers and microdisc resonators. Scale bar is 5 µm. Figure: Oliver Benson


(a) Sketch of the experimental configuration. The excitation spot is scanned over the resonator disc. Photons are detected at both waveguide outputs simultaneously. (b) Photon counts collected at one end of the waveguide while scanning the excitation spot with a second objective. The circle highlights the position of a single NV-centre. Shape distortions are due to non closed-loop piezo-scanning. Scale bar is 5 µm. Figure: Oliver Benson

Due to their very small size of only a few millionths of a millimetre, some of the diamond fragments contained only a single colour centre, which could be excited optically with the help of laser light. The colour centre releases its energy by emission of single quanta of light, or photons, which are thus generated in a controlled way one-by-one.

The researchers now mixed the diamond fragments with a special photo resist. A focussed laser beam irradiating the resist layer induced local polymerisation, i.e. the resist was turned into plastic. In this way it was possible to write nearly arbitrary three-dimensional structures, which contain single diamond fragments with single colour centres. The research team at first fabricated optical waveguides and resonators for efficient collection and routing of the photons emitted from the colour centres.

A major advantage of the new hybrid material system is on the one hand the well-established and cost efficient fabrication method and on the other hand the unlimited stability of operation even at room temperature. The next steps are now to combine the novel structures with other optical instrumentation. The researchers expect that in this way numerous applications in the fields of high-resolution microscopy, optical sensing, or quantum information processing can be realized in a reliable and cost-efficient approach.

Further Information:

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, O. Benson, Scientific Reports 3:1577, 1-5 (2013)

Contact:

Prof. Dr. Oliver Benson
oliver.benson@physik.hu-berlin.de
Weitere Informationen:
http://www.nature.com/srep/2013/130402/srep01577/full/srep01577.html

Constanze Haase | idw
Further information:
http://www.hu-berlin.de

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>