Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum leap for phonon lasers

22.02.2010
Physicists take a big step toward practical sound-based laser analogues

Physicists have taken major step forward in the development of practical phonon lasers, which emit sound in much the same way that optical lasers emit light.

The development should lead to new, high-resolution imaging devices and medical applications. Just as optical lasers have been incorporated into countless, ubiquitous devices, a phonon laser is likely to be critical to a host of as yet unimaginable applications.

Two separate research groups, one located in the US and the other in the UK, are reporting dramatic advances in the development of phonon lasers in the current issue of Physical Review Letters. The papers are highlighted with a Viewpoint by Jacob Khurgin of Johns Hopkins University in the February 22 issue of Physics (http://physics.aps.org).

Light and sound are similar in various ways: they both can be thought of in terms of waves, and they both come in quantum mechanical units (photons in the case of light, and phonons in the case of sound). In addition, both light and sound can be produced as random collections of quanta (consider the light emitted by a light bulb) or orderly waves that travel in coordinated fashion (as is the case for laser light). Many physicists believed that the parallels imply that lasers should be as feasible with sound as they are with light.

While low frequency sound in the range that humans can hear (up to 20 kilohertz) is easy to produce in either a random or orderly fashion, things get more difficult at the terahertz (trillions of hertz) frequencies that are the regime of potential phonon laser applications. The problem stems from the fact that sound travels much slower than light, which in turn means that the wavelength of sound is much shorter than light at a given frequency. Instead of resulting in orderly, coherent phonon lasers, miniscule structures that can produce terahertz sound tend to emit phonons randomly.

Researchers at Caltech have overcome the problem by assembling a pair of microscopic cavities that only permit specific frequencies of phonons to be emitted. They can also tune the system to emit phonons of different frequencies by changing the relative separation of the microcavities.

The group from the UK's University of Nottingham took a different approach. They built their device out of electrons moving through a series of structures known as quantum wells. As an electron hops from one quantum well to the next, it produces a phonon. So far, the Nottingham group has not demonstrated a true phonon lasing, but their system amplifies high-frequency sound in a way that suggests it could be it a key component in future phonon laser designs.

Regardless of the approach, the recent developments are landmark breakthroughs on the route to practical phonon lasers. Phonon lasers would have to go a long way to match the utility of their optical cousins, but the many applications that physicists have in mind already, including medical imaging, high precision measurement devices, and high-energy focused sound, suggest that sound-based lasers may have a future nearly as bright as light lasers.

James Riordon | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>