Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum leap in lasers at Dartmouth brightens future for quantum computing

22.07.2014

Dartmouth scientists and their colleagues have devised a breakthrough laser that uses a single artificial atom to generate and emit particles of light.

The laser may play a crucial role in the development of quantum computers, which are predicted to eventually outperform today's most powerful supercomputers.

The study appears in the journal Physical Review B.

The new laser is the first to rely exclusively on superconducting electron pairs. "The fact that we use only superconducting pairs is what makes our work so significant," says Alex Rimberg, a professor of physics and astronomy at Dartmouth. Superconductivity is a condition that occurs when electricity can travel without any resistance or loss of energy.

"The artificial atom is made of nanoscale pieces of superconductor," says Rimberg. "The reason for using the artificial atom is that you can now make it part of an electrical circuit on a chip, something you can't do with a real atom, and it means we have a much clearer path toward interesting applications in quantum computing."

Light from the laser is produced by applying electricity to the artificial atom. This causes electrons to hop across the atom and, in the process, produce photons that are trapped between two superconducting mirrors. The process is "invisible to the human eye; the hopping electrons dance back and forth across the atom in time with the oscillating waves of the light," Rimberg says.

With the new laser, electrical energy is converted to light that has the ability to transmit information to and from a quantum computer. "With a quantum computer, you have to get the information from point A to point B," he says.

"A computer that does a calculation but has no way of getting the information anywhere else isn't particularly useful. Our laser might offer an easy way of producing the kinds of weird quantum states of light that could be used to carry quantum information around."

Much the laser development came out of the thesis work of one of Rimberg's former graduate students, Fei Chen, first author on the Physical Review B paper, with help from another graduate student Juliang Li, and postdoctoral researcher Joel Stettenheim.

###

Professor Alex Rimberg is available to comment at Alexander.J.Rimberg@dartmouth.edu

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

John Cramer | Eurek Alert!
Further information:
http://www.dartmouth.edu

Further reports about: Quantum Superconductivity artificial astronomy electricity electrons lasers nanoscale resistance

More articles from Physics and Astronomy:

nachricht Monster galaxies gain weight by eating smaller neighbours
19.09.2014 | International Centre for Radio Astronomy Research

nachricht New Insights into the World of Quantum Materials
19.09.2014 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

"Start-ups and spin-offs funding – Public and private policies", 14th October 2014

12.09.2014 | Event News

BALTIC 2014: Baltic Sea Geologists meet in Warnemünde

03.09.2014 | Event News

IT security in the digital society

27.08.2014 | Event News

 
Latest News

University of Stuttgart investigates electrically operated citizens’ buses

19.09.2014 | Transportation and Logistics

New icing wind tunnel at Fraunhofer IFAM allows anti-icing tests under realistic conditions

19.09.2014 | Materials Sciences

A new piece in the autism puzzle

19.09.2014 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>