Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum ghosts are helpful

28.04.2009
The idea that far distant particles can somehow 'talk' to each other worried Einstein so much that he called it 'spooky action at a distance'.

Having confirmed its existence, scientists today are learning how to use this 'spooky action' as a helpful tool. Now a team of physicists at the University of Bristol and Imperial College London have harnessed this phenomenon to shed light on another unusual and previously difficult aspect of quantum physics - that of distinguishing between two similar quantum devices.

In the everyday world any process can be considered as a black box device with an input and an output; if you wish to identify the device you simply apply inputs, measure the outputs and determine what must have happened in between.

But quantum black boxes are different. Distinguishing between them is impossible using only single particle inputs because the outputs are not distinguishable: a fundamental consequence of the laws of quantum mechanics is that only very few states of a quantum particle can be reliably distinguished from one another.

The Bristol-Imperial team has shown how to get around this problem using 'spooky action'.

Anthony Laing, PhD student in the Department of Physics, who performed the study, said: "Apart from providing insight into the fundamentals of quantum physics, this work may be crucial for future quantum technologies.

"How else could a future quantum engineer build a quantum computer if they can't tell which circuits they have?"

The new findings have implications for our understanding of quantum mechanics as well as the emerging potential of quantum information science.

This work was performed in the Bristol Centre for Quantum Photonics led by Professor Jeremy O'Brien (www.phy.bris.ac.uk/groups/cqp) as part of a collaboration with Dr Terry Rudolph at Imperial College London.

The paper in Physical Review Letters is published online ahead of print, 24 April 2009, http://link.aps.org/abstract/PRL/v102/e160502.

The work was supported by the US Intelligence Advanced Research Projects Activity (IARPA), the UK Engineering and Physical Sciences Research Council (EPSRC), the UK Quantum Information Processing Interdisciplinary Collaboration (QIP IRC), and the Leverhulme Trust.

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Physics and Astronomy:

nachricht Light-emitting bubbles captured in the wild
28.02.2017 | Georg-August-Universität Göttingen

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>