Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum gas in free fall

23.06.2010
A sensitive measuring device must not be dropped - because this usually destroys the precision of the instrument.

A team of researchers including scientists from the Max Planck Institute of Quantum Optics has done exactly this, however. And the researchers want to use this experience to make the measuring instrument even more sensitive. The team, headed by physicists from the University of Hanover, dropped a piece of apparatus, in which they generated a weightless Bose-Einstein condensate (BEC), to the bottom of a drop tower at the University of Bremen.

The particles in a BEC lose their individuality and can be considered to be a 'super-particle'. The researchers want to use such an ultra-cold quantum gas at zero gravity to construct a very sensitive measuring device for the Earth's gravitational field - in order to find deposits of minerals, and also to settle fundamental issues in physics (Science, June 18, 2010).

In a vacuum, a feather falls as quickly as a lead ball - something that is already presented to students as being irrefutable. "However, the equivalence principle is only a postulate that needs to be tested," says Ernst Maria Rasel, professor at the University of Hanover. According to the equivalence principle, the heavy mass with which bodies attract each other corresponds to the inertial mass, which resists an accelerating force. This means that in a vacuum all bodies hit the ground with the same speed. Physicists want to use a measuring device that measures gravity extremely accurately to investigate whether this hypothesis can really become a physical law. Ernst Maria Rasel's team has now taken an initial step in this direction.

The researchers generated a Bose-Einstein condensate (BEC) in zero gravity and observed, for more than a second, how the atomic cloud behaves in free fall. To this end, they installed an atom chip developed by researchers working with Theodor W. Hänsch, Director at the Max Planck Institute of Quantum Optics, and solenoids, lasers, a camera and the necessary energy supply into a cylindrical capsule, which is about as high and wide as a door. After they had moved a cloud of several million rubidium atoms onto the atom chip, they dropped the complete apparatus 146 metres into the depths. A tower at the Center of Applied Space Technology and Microgravity of the University of Bremen specializes in such scientific cases.

As the capsule was falling to the ground for four seconds in the drop tower, the researchers generated the BEC on the atom chip, initially by remote control: strong magnetic fields and lasers hold the particles on the chip and cool them. At a few millionths of a degree above absolute zero, the temperature at minus 273.16 degrees Celsius, the particles have lost almost all of their energy and assume a new physical state: all atoms are now in the quantum mechanical ground state so that they can no longer be distinguished as individual particles in the quantum gas.

An atom chip - the fast path to ultra-cold quantum gas

"They behave completely coherently, practically like a heap of atoms that assumes the properties of a single huge atom," says Tilo Steinmetz, who was involved in the experiment as a researcher from the Max Planck Institute of Quantum Optics. Since the laws of quantum mechanics say that every particle can also be considered to be a wave, it is possible to describe what is happening in a different way: A wave packet of matter forms in which the atoms no longer stay at fixed locations - they are delocalized. This grouping is maintained until an energetic push, however small, mixes it up.

"We generate a BEC in less than a second on our atom chip. With conventional laboratory apparatus, this takes up to one minute," says Tilo Steinmetz. In addition, an experiment on an atom chip requires significantly less electrical power. "It is thus ideal for use in a drop tower capsule, where energy supply and cooling present a logistical challenge," says Steinmetz.

Ten times more time for a measurement

As soon as the atoms on the chip had merged into the super-particle, the researchers carefully loosened the hold of the trap and released the BEC. The camera in the capsule now enabled them to observe how the condensate spread. This movement reacts extremely sensitively to external fields - to differences in Earth's gravitational field, for example. These differences exist because the gravitation at a certain point on Earth depends on the local density of the Earth's crust. The longer the Bose-Einstein condensate expands, i.e. the longer it floats in zero gravity, the clearer these differences make themselves felt as it expands. With the experiment in the drop tower alone, the researchers extended the time available for a measurement by more than tenfold when compared to a laboratory experiment. This could help in the future to drastically improve the accuracy of measurement data.

The differences can be measured in an atom interferometer: A quantum gas, that is the wave-packet of matter, is split into two parts and moves in the gravitational field along different paths through space-time. Gravitation behaves like an optical medium, whose refractive index refracts the waves. As soon as the two parts reunite, there is interference, as is also generated when waves on a water surface run into each other. The interference pattern depends on how differently the two matter waves expand. If matter waves of different composition are compared, a test of the equivalence principle with matter waves is performed. The physicists in Ernst Maria Rasel's group now want to construct such an atom interferometer for the capsule of the Bremen drop tower.

"Ultimately, we would like to perform such experiments in space," says Ernst Maria Rasel. The equivalence principle could also be tested there. To this end, the researchers must drop clouds of different atoms to Earth for as long as possible. They could then find out whether all bodies really fall with the same speed. And the longer the atom clouds remain in zero gravity - that is, the further they fall - the more chance there is of clarifying this.

Original work:

T.v. Zoest, N. Gaaloul, Y. Singh, H. Ahlers, W. Herr, S. T. Seidel, W. Ertmer, E. Rasel, M. Eckart, E. Kajari, S. Arnold, G. Nandi, W. P. Schleich, R. Walser, A. Vogel, K. Sengstock, K. Bongs, W. Lewoczko-Adamczyk, M. Schiemangk, T. Schuldt, A. Peters, T. Könemann, H. Müntinga, C. Lämmerzahl, H. Dittus, T. Steinmetz, T. W. Hänsch, J. Reichel

Bose-Einstein Condensation in Microgravity
Science, June 18, 2010

Dr. Tilo Steinmetz | EurekAlert!
Further information:
http://www.uni-muenchen.de

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>