Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum fluctuations are key in superconductors

11.01.2010
First direct evidence of quantum critical point in iron-based 'pnictides'

New experiments on a recently discovered class of iron-based superconductors suggest that the ability of their electrons to conduct electricity without resistance is directly connected with the magnetic properties of those electrons.

Results of the experiments appear in the Jan. 8 issue of Physical Review Letters. The tests, which were carried out by a team of U.S. and Chinese physicists, shed light on the fundamental nature of high-temperature superconductivity, said Rice physicist Qimiao Si, a co-author on the study.

If better understood, high-temperature superconductors could be used to revolutionize electric generators, MRI scanners, high-speed trains and other devices.

In the study, scientists from Rice University, the University of Tennessee, Oak Ridge National Laboratory (ORNL), the National Institute of Standards and Technology (NIST), the Chinese Academy of Sciences' Institute of Physics and Renmin University in Beijing examined several iron-arsenide compounds. These are the "undoped" parents of the iron "pnictides" (pronounced: NICK-tides), a class of materials that were found to be high-temperature superconductors in 2008.

The experiments set out to test theoretical predictions that Si and collaborators published in the Proceedings of the National Academy of Sciences last March. They predicted that varying the size of some atoms in the parent compounds could allow physicists to tune the material's quantum fluctuations. These types of fluctuations can create tipping points called magnetic "quantum critical points," a state that exists when a material is at the cusp of transitioning from one quantum phase to another.

Using neutron-scattering facilities at NIST and ORNL, the team bombarded the materials with neutrons to decipher their structural and magnetic properties. The tests, which supported Si's theoretical predictions, determined that the strength of magnetic order in the materials was reduced when arsenic atoms were replaced with slightly smaller phosphorus atoms.

"We found the first direct evidence that a magnetic quantum critical point exists in these materials," Si said.

The results were made possible by the efforts of Nanlin Wang, a physicist from the Chinese Academy of Sciences' Institute of Physics, and his research group. They created a series of samples with varying amounts of phosphorous substituting for arsenic.

The discovery of high-temperature superconductivity in copper-oxide ceramics in 1986 led physicists to realize that quantum effects in electronic materials were far more complex than anticipated. One of these effects is quantum criticality. Criticality occurs near a tipping point that a material goes through when it changes phases. Many phase changes -- like ice melting into water -- occur because of thermal fluctuations. But quantum criticalities and quantum phase changes arise solely from quantum fluctuations.

"Our finding of a quantum critical point in iron pnictides opens the door for new avenues of research into this important class of materials," said University of Tennessee/ORNL physicist Pengcheng Dai, a neutron scattering specialist.

Si said, "The evidence from this study bolsters the hypothesis that high-temperature superconductivity in the iron pnictides originates from electronic magnetism. This should be contrasted to conventional low-temperature superconductivity, which is caused by ionic vibrations."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>