Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum fluctuations are key in superconductors

11.01.2010
First direct evidence of quantum critical point in iron-based 'pnictides'

New experiments on a recently discovered class of iron-based superconductors suggest that the ability of their electrons to conduct electricity without resistance is directly connected with the magnetic properties of those electrons.

Results of the experiments appear in the Jan. 8 issue of Physical Review Letters. The tests, which were carried out by a team of U.S. and Chinese physicists, shed light on the fundamental nature of high-temperature superconductivity, said Rice physicist Qimiao Si, a co-author on the study.

If better understood, high-temperature superconductors could be used to revolutionize electric generators, MRI scanners, high-speed trains and other devices.

In the study, scientists from Rice University, the University of Tennessee, Oak Ridge National Laboratory (ORNL), the National Institute of Standards and Technology (NIST), the Chinese Academy of Sciences' Institute of Physics and Renmin University in Beijing examined several iron-arsenide compounds. These are the "undoped" parents of the iron "pnictides" (pronounced: NICK-tides), a class of materials that were found to be high-temperature superconductors in 2008.

The experiments set out to test theoretical predictions that Si and collaborators published in the Proceedings of the National Academy of Sciences last March. They predicted that varying the size of some atoms in the parent compounds could allow physicists to tune the material's quantum fluctuations. These types of fluctuations can create tipping points called magnetic "quantum critical points," a state that exists when a material is at the cusp of transitioning from one quantum phase to another.

Using neutron-scattering facilities at NIST and ORNL, the team bombarded the materials with neutrons to decipher their structural and magnetic properties. The tests, which supported Si's theoretical predictions, determined that the strength of magnetic order in the materials was reduced when arsenic atoms were replaced with slightly smaller phosphorus atoms.

"We found the first direct evidence that a magnetic quantum critical point exists in these materials," Si said.

The results were made possible by the efforts of Nanlin Wang, a physicist from the Chinese Academy of Sciences' Institute of Physics, and his research group. They created a series of samples with varying amounts of phosphorous substituting for arsenic.

The discovery of high-temperature superconductivity in copper-oxide ceramics in 1986 led physicists to realize that quantum effects in electronic materials were far more complex than anticipated. One of these effects is quantum criticality. Criticality occurs near a tipping point that a material goes through when it changes phases. Many phase changes -- like ice melting into water -- occur because of thermal fluctuations. But quantum criticalities and quantum phase changes arise solely from quantum fluctuations.

"Our finding of a quantum critical point in iron pnictides opens the door for new avenues of research into this important class of materials," said University of Tennessee/ORNL physicist Pengcheng Dai, a neutron scattering specialist.

Si said, "The evidence from this study bolsters the hypothesis that high-temperature superconductivity in the iron pnictides originates from electronic magnetism. This should be contrasted to conventional low-temperature superconductivity, which is caused by ionic vibrations."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>