Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum doughnuts slow and freeze light at will

10.03.2009
Research led by the University of Warwick has found a way to use doughnut shaped by-products of quantum dots to slow and even freeze light, opening up a wide range of possibilities from reliable and effective light based computing to the possibility of "slow glass".

The key to this new research is the “exciton”. This describes the pairing of an electron that has been kicked into a higher energy state by a photon, with a hole or gap it (or another electron) leaves within the shell or orbit around the nucleus of an atom.

Despite its new high energy state the electron remains paired with one of the holes or positions that has been vacated by electrons moving to a higher energy state. When an electron’s high energy state decays again it is drawn back to the hole it is linked to and a photon is once again emitted.

That cycle usually happens very quickly but if one could find a way to freeze or hold an exciton in place for any length of time one could delay the reemitting of a photon and effectively slow or even freeze light.

The researchers, led by PhD researcher Andrea Fischer and Dr. Rudolf A. Roemer from the University of Warwick’s Department of Physics, looked at the possibilities presented by some tiny rings of matter accidentally made during the manufacture quantum dots. When creating these very small quantum dots of a few 10-100nm in size physicists some times cause the material to splash when depositing it onto a surface leaving, not a useful dot, but a doughnut shaped ring of material. Though originally created by accident these “Aharonov-Bohm nano rings” are now a source of study in their own right and in this case seemed just the right size for enclosing an exciton. However simply being this useful size does not, in itself, allow them to contain or hold an exciton for any length of time.

However remarkably the Warwick led research team have found that if a combination of magnetic and electric fields is applied to these nano-rings they can actually then simply tune the electric field to freeze an exciton in place or let it collapse and re-emit a photon.

While other researchers have used varying exotic states of matter to dramatically slow the progress of light this is the first time a technique has been devised to completely freeze and release individual photons at will.

Dr Roemer said:

“This has significant implications for the development of light based computing which would require an effective and reliable mechanism such as this to manipulate light. “

The technique could also be used to develop a “buffer” of incoming photons which could re-release them in sequence at a later date thus creating an effect not unlike the concept of “Slow Glass” first suggested by science fiction author Bob Shaw several decades ago.

The new research paper is entitled “Exciton storage in a nanoscale Aharonov-Bohm ring with electric field tuning" by University of Warwick PhD student Andrea M.Fischer, Dr Rudolf Roemer (University of Warwick) Vivaldo L. Campo Jr. (Universidade Federal de Sao Carlos-UFSCar, Brazil), and Mikhail E. Portnoi (University of Exeter), and has just been published in Physical Review Letters (PRL)

For further information please contact:

Dr. Rudolf A. Roemer, Department of Physics, University of Warwick,
Tel +44 (0)2476 574328 r.roemer@warwick.ac.uk
Peter Dunn, Press and Media Relations Manager
Communications Office, University House,
University of Warwick, Coventry, CV4 8UW, United Kingdom
email: p.j.dunn@warwick.ac.uk Tel: +44 (0)24 76 523708 Mobile/Cell: +44 (0)7767 655860

Dr. Rudolf A. Roemer | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>