Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quantum Computing: Are You Ready for This Upgrade?

If you are curious about the potential of quantum computing, you will want to keep your eye on “Harnessing Quantum Physics”. This is one of many panel discussions coming your way as part of the Quantum to Cosmos Festival, running on-site, online and on TV from October 15-25, 2009.

Compared with our everyday experience, the quantum world – the world of the very small, of atoms and elementary particles – is incredibly bizarre. For example, it is possible for a single particle to behave as if it were in more than one place at the same time. Also, our notion of what is separate and what is not breaks down in the quantum world: particles could be kilometers apart and still, in some respects, act like a single entity.

As strange as it may be, there is little question that this is how the quantum world works, as hundreds of experiments and many highly successful technological applications have shown: for example, the transistor (the basis of most of our current computing technology), the laser (the basis of today’s fiber optic communication networks and many other technologies), MRI (Magnetic Resonance Imaging) devices crucial to modern medicine, SQUIDs (Superconducting Quantum Interference Devices) used to search for new oil deposits or scan magnetic activity in the brain, and many more.

Currently, physicists are working on yet another quantum application. Their goal is to harness quantum weirdness to develop new technologies that will take us from the information age into the quantum information age. This panel of experts will explain the strange features of the quantum world that are the basis for new technologies such as quantum cryptography and quantum computing, and will explore the insights in quantum physics that are making this possible.

The lively Q2C panel will be moderated by PI and UW’s Michele Mosca and includes an international roster of quantum computing experts.

Moderator: Michele Mosca
Physicist, Perimeter Institute and Deputy Director, Institute for Quantum Computing, University of Waterloo

Dr. Mosca is co-founder and Deputy Director of IQC and an Associate Faculty member at Perimeter Institute. His principal research concerns the design of quantum algorithms, and he is known for his early work on Nuclear Magnetic Resonance (NMR).

Panellist: Ignacio Cirac
Physicist, Max Planck Institute of Quantum Optics
Dr. Cirac is Director of the Theory Division of the Max Planck Institute of Quantum Optics. He is a leading quantum information theorist whose research aims to characterize quantum phenomena and to develop a new theory of quantum information - work which may ultimately contribute to the development of quantum computers.
Panellist: Daniel Gottesman
Physicist, Perimeter Institute
Dr. Gottesman has spent over 10 years working in the field of quantum information and is widely regarded as a world expert on techniques for preventing errors in quantum computing. A former student of John Preskill, he has worked at Los Alamos, Microsoft Research, and UC Berkeley.
Panellist: Avi Wigderson
Computer Scientist, Institute for Advanced Study
Dr. Wigderson is a Professor at the School of Mathematics, Institute for Advanced Study, Princeton. His research interests include randomness and computation, quantum computation and communication, and cryptography. He is the recipient of many awards, including the Nevanlinna Prize.

This is only one of over 50 thought-provoking events coming your way in October! The full program of events, showing speakers, topics, dates and ticketing details will be released later this month. To avoid missing out on this and other announcements go to to join our online community and sign up for regular email updates.

About the Quantum to Cosmos Festival
For 10 exciting days this October, Perimeter Institute’s Quantum to Cosmos: Ideas for the Future (Q2C) will take a global audience from the strange world of subatomic particles to the outer frontiers of the universe. Q2C will transcend traditional festivals by streaming events live and on demand, offering virtual interaction with exhibits, and providing special opportunities for students and teachers. TVO, Ontario’s public educational media organization, is the Presenting Media Partner for the Q2C Festival. The Q2C Festival is produced for Perimeter Institute by Title Entertainment Inc.
About Perimeter Institute
Canada's Perimeter Institute for Theoretical Physics is an independent, non-profit, scientific research and educational outreach organization where international scientists cluster to push the limits of our understanding of physical laws and develop new ideas about the very essence of space, time, matter and information. The centre provides a multi-disciplinary environment to foster scientific collaboration in research areas of cosmology, particle physics, quantum foundations, quantum gravity, quantum information, superstring theory, and related disciplines. PI also provides a wide array of award-winning outreach resources and public lectures for students, teachers and the general public to share the joy of research, discovery and innovation. In partnership with the Governments of Ontario and Canada, PI continues to be a successful example of private and public collaboration in science research and education.

Angela Robinson | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>