Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Computing: Are You Ready for This Upgrade?

27.08.2009
If you are curious about the potential of quantum computing, you will want to keep your eye on “Harnessing Quantum Physics”. This is one of many panel discussions coming your way as part of the Quantum to Cosmos Festival, running on-site, online and on TV from October 15-25, 2009.

Compared with our everyday experience, the quantum world – the world of the very small, of atoms and elementary particles – is incredibly bizarre. For example, it is possible for a single particle to behave as if it were in more than one place at the same time. Also, our notion of what is separate and what is not breaks down in the quantum world: particles could be kilometers apart and still, in some respects, act like a single entity.

As strange as it may be, there is little question that this is how the quantum world works, as hundreds of experiments and many highly successful technological applications have shown: for example, the transistor (the basis of most of our current computing technology), the laser (the basis of today’s fiber optic communication networks and many other technologies), MRI (Magnetic Resonance Imaging) devices crucial to modern medicine, SQUIDs (Superconducting Quantum Interference Devices) used to search for new oil deposits or scan magnetic activity in the brain, and many more.

Currently, physicists are working on yet another quantum application. Their goal is to harness quantum weirdness to develop new technologies that will take us from the information age into the quantum information age. This panel of experts will explain the strange features of the quantum world that are the basis for new technologies such as quantum cryptography and quantum computing, and will explore the insights in quantum physics that are making this possible.

The lively Q2C panel will be moderated by PI and UW’s Michele Mosca and includes an international roster of quantum computing experts.

Moderator: Michele Mosca
Physicist, Perimeter Institute and Deputy Director, Institute for Quantum Computing, University of Waterloo

Dr. Mosca is co-founder and Deputy Director of IQC and an Associate Faculty member at Perimeter Institute. His principal research concerns the design of quantum algorithms, and he is known for his early work on Nuclear Magnetic Resonance (NMR).

Panellist: Ignacio Cirac
Physicist, Max Planck Institute of Quantum Optics
Dr. Cirac is Director of the Theory Division of the Max Planck Institute of Quantum Optics. He is a leading quantum information theorist whose research aims to characterize quantum phenomena and to develop a new theory of quantum information - work which may ultimately contribute to the development of quantum computers.
Panellist: Daniel Gottesman
Physicist, Perimeter Institute
Dr. Gottesman has spent over 10 years working in the field of quantum information and is widely regarded as a world expert on techniques for preventing errors in quantum computing. A former student of John Preskill, he has worked at Los Alamos, Microsoft Research, and UC Berkeley.
Panellist: Avi Wigderson
Computer Scientist, Institute for Advanced Study
Dr. Wigderson is a Professor at the School of Mathematics, Institute for Advanced Study, Princeton. His research interests include randomness and computation, quantum computation and communication, and cryptography. He is the recipient of many awards, including the Nevanlinna Prize.

This is only one of over 50 thought-provoking events coming your way in October! The full program of events, showing speakers, topics, dates and ticketing details will be released later this month. To avoid missing out on this and other announcements go to www.q2cfestival.com to join our online community and sign up for regular email updates.

About the Quantum to Cosmos Festival
For 10 exciting days this October, Perimeter Institute’s Quantum to Cosmos: Ideas for the Future (Q2C) will take a global audience from the strange world of subatomic particles to the outer frontiers of the universe. Q2C will transcend traditional festivals by streaming events live and on demand, offering virtual interaction with exhibits, and providing special opportunities for students and teachers. TVO, Ontario’s public educational media organization, is the Presenting Media Partner for the Q2C Festival. The Q2C Festival is produced for Perimeter Institute by Title Entertainment Inc.
About Perimeter Institute
Canada's Perimeter Institute for Theoretical Physics is an independent, non-profit, scientific research and educational outreach organization where international scientists cluster to push the limits of our understanding of physical laws and develop new ideas about the very essence of space, time, matter and information. The centre provides a multi-disciplinary environment to foster scientific collaboration in research areas of cosmology, particle physics, quantum foundations, quantum gravity, quantum information, superstring theory, and related disciplines. PI also provides a wide array of award-winning outreach resources and public lectures for students, teachers and the general public to share the joy of research, discovery and innovation. In partnership with the Governments of Ontario and Canada, PI continues to be a successful example of private and public collaboration in science research and education.

Angela Robinson | Newswise Science News
Further information:
http://www.perimeterinstitute.ca

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>