Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Computing Has Applications in Magnetic Imaging, Say Pitt Researchers

20.12.2011
Pitt physicists able to obtain higher-precision measurements with “single-electrons in-diamond” approach

Quantum computing—considered the powerhouse of computational tasks—may have applications in areas outside of pure electronics, according to a University of Pittsburgh researcher and his collaborators.

Working at the interface of quantum measurement and nanotechnology, Gurudev Dutt, assistant professor in Pitt’s Department of Physics and Astronomy in the Kenneth P. Dietrich School of Arts and Sciences, and his colleagues report their findings in a paper published online Dec. 18 in Nature Nanotechnology. The paper documents important progress towards realizing a nanoscale magnetic imager comprising single electrons encased in a diamond crystal.

“Think of this like a typical medical procedure—a Magnetic Resonance Imaging (MRI)—but on single molecules or groups of molecules inside cells instead of the entire body. Traditional MRI techniques don’t work well with such small volumes, so an instrument must be built to accommodate such high-precision work,” says Dutt.

However, a significant challenge arose for researchers working on the problem of building such an instrument: How does one measure a magnetic field accurately using the resonance of the single electrons within the diamond crystal? Resonance is defined as an object’s tendency to oscillate with higher energy at a particular frequency, and occurs naturally all around us: for example, with musical instruments, children on swings, and pendulum clocks. Dutt says that resonances are particularly powerful because they allow physicists to make sensitive measurements of quantities like force, mass, and electric and magnetic fields. “But they also restrict the maximum field that one can measure accurately.”

In magnetic imaging, this means that physicists can only detect a narrow range of fields from molecules near the sensor’s resonant frequency, making the imaging process more difficult.

“It can be done,” says Dutt, “but it requires very sophisticated image processing and other techniques to understand what one is imaging. Essentially, one must use software to fix the limitations of hardware, and the scans take longer and are harder to interpret.”

Dutt—working with postdoctoral researcher Ummal Momeen and PhD student Naufer Nusran (A&S’08 G), both in Pitt’s Department of Physics and Astronomy—has used quantum computing methods to circumvent the hardware limitation to view the entire magnetic field. By extending the field, the Pitt researchers have improved the ratio between maximum detectable field strength and field precision by a factor of 10 compared to the standard technique used previously. This puts them one step closer toward a future nanoscale MRI instrument that could study properties of molecules, materials, and cells in a noninvasive way, displaying where atoms are located without destroying them; current methods employed for this kind of study inevitably destroy the samples.

“This would have an immediate impact on our understanding of these molecules, materials, or living cells and potentially allow us to create better technologies,” says Dutt.

These are only the initial results, says Dutt, and he expects further improvements to be made with additional research: “Our work shows that quantum computing methods reach beyond pure electronic technologies and can solve problems that, earlier, seemed to be fundamental roadblocks to making progress with high-precision measurements.”

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>