Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Communication in Random Networks

21.05.2010
Theorists at MPQ find surprising behaviours in quantum random networks.

Internet, networks of connections between Hollywood actors, etc, are examples of complex networks, whose properties have been intensively studied in recent times. The small-world property (that everyone has a few-step connection to celebrities), for instance, is a prominent result derived in this field.


Illustration of a quantum random network

A group of scientists around Professor Cirac, Director at the Max Planck Institute of Quantum Optics (Garching near Munich) and Leader of the Theory Division, has now introduced complex networks in the microscopic, so called, quantum regime (Nature Physics, Advanced Online Publication, DOI:10.1038/NPHYS1665).

The scientists have proven that these quantum complex networks have surprising properties: even in a very weakly connected quantum network, performing some measurements and other simple quantum operations allows to generate arbitrary graphs of connections that are otherwise impossible in their classical counterparts.

The behaviour of networks has been widely explored in the context of classical statistical mechanics. Periodic networks, by definition, have a regular structure, in which each node is connected to a constant number of ‘geometrical’ neighbours. If one tries to enlarge these systems, their topology is not altered since the unit cell is just repeated ad aeternum. The construction of a random network is completely different: each node has a small probability of being connected to any other node. Depending on the connection probability and in the limit of infinite size, such networks exhibit some typical effects. For instance, if this probability is high enough, nearly all nodes will be part of one giant cluster; if it is too small only sparse groups of connected nodes will be present.

In a quantum network one link between neighbouring nodes is given by one pair of entangled qubits, for example atoms; in other words, one link in a quantum network represents the entanglement between two qubits. Therefore, a node possesses exactly one qubit for each neighbour, and since it can act on these qubits it is called a ‘station’. This holds for any kind of quantum networks. However, there are different ways of defining the entanglement between neighbouring qubits. Until now, quantum networks have been mostly modelled as periodically structured graphs, that is, lattices. In the work described here the scientists set the amount of entanglement between two nodes to be equal to the connection probability of the classical random graphs.

In the classical case, some specific subgraphs appear suddenly if one lets the connection probability scale with the size of the network: for very low probabilities only trivial connections (simple links) are present in the network, whereas for higher probabilities the subgraphs become more and more complex (e.g., triangles, squares, or stars). In quantum networks, on the other hand, a qualitatively different behaviour emerges: even for the lowest non-trivial connection probability, i.e., if the entanglement between the nodes is, at first sight, just sufficient to get simple connections, it is in fact possible to generate communication subgraphs of any complexity. This result mainly relies on the superposition principle and on the ability to coherently manipulate the qubits at the stations.

“In our article we want to point out that networks with a disordered structure and not periodic lattices have to be studied in the context of quantum communication”, says Sébastien Perseguers, who has worked on this topic in the frame of his doctoral thesis. “In fact, it is well known that real-world communication networks have a complex topology, and we may predict that this will also be the case for quantum networks. Furthermore, we want to emphasize the fact that the best results are obtained if one ‘thinks quantumly’ not only at the connection scale, but also from a global network perspective. In this respect, it is essential to deepen our knowledge of multipartite entanglement, that is, entanglement shared between more than two particles.” In the future the scientists are going to extend their model to networks of a richer structure, the so-called complex networks which describe a wide variety of systems in nature and society, and they expect to find many new and unexpected phenomena. Sébastien Perseguers/Olivia Meyer-Streng

Original Publication:
S. Perseguers, M. Lewenstein, A. Acín and J.I. Cirac
Quantum random networks
Nature Physics, Advanced Online Publication, DOI:10.1038/NPHYS1665
Contact:
Prof. Dr. Ignacio Cirac
Honorary Professor, Technische Universität München
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 705 / 736
Fax: +49 - 89 / 32905 336
E-mail: ignacio.cirac@mpq.mpg.de
Sébastien Perseguers
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 345
Fax: +49 - 89 / 32905 336
E-mail: sebastien.perseguers@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de
http://www.mpq.mpg.de/Theorygroup/CIRAC

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>