Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Chaos in Ultracold Gas Discovered

12.03.2014

The team of Francesca Ferlaino, University of Innsbruck, discovered that even simple systems, such as neutral atoms, can possess chaotic behavior, which can be revealed using the tools of quantum mechanics. The ground-breaking research, published in the journal Nature, opens up new avenues to observe the interaction between quantum particles.

The team of Francesca Ferlaino, Institute for Experimental Physics of the University of Innsbruck, Austria, has experimentally shown chaotic behavior of particles in a quantum gas.


Even simple systems, such as neutral atoms, can possess chaotic behavior.

Photo: Erbium Team, University of Innsbruck

“For the first time we have been able to observe quantum chaos in the scattering behavior of ultracold atoms,” says an excited Ferlaino. The physicists used random matrix theory to confirm their results, thus asserting the universal character of this statistical theory.

Nobel laureate Eugene Wigner formulated random matrix theory to describe complex systems in the 1950s. Although interactions between neutrons with atomic nuclei were not well-known then, Wigner was able to reliably predict properties of complex spectra by using random matrices.

... more about:
»Erbium »Phone »Quantum »chaotic »gases »particles

Today random matrix theory is applied broadly not only in physics but also in number theory, wireless information technology and risk management models in finance to name only a few fields of application. In the Bohigas-Giannoni-Schmit conjecture random matrix theory has been connected to chaotic behavior in quantum mechanical systems.

Catalan physicist Oriol Bohigas, who passed away last year, can be considered the father of quantum chaos research. 

Chaos in the quantum world

To observe quantum chaos, the physicists in Innsbruck cool erbium atoms to a few hundred nanokelvin and load them in an optical dipole trap composed of laser beams. They then influence the scattering behavior of the particles by using a magnetic field.

After holding the atoms in the trap for 400 milliseconds, the researchers record the atom number remaining in the trap. Thus, the scientists are able to determine at which magnetic field two atoms are coupled to form a weakly-bound molecule.

At this magnetic field, so-called Fano-Feshbach resonances emerge. After varying the magnetic field in each experimental cycle and repeating the experiment 14,000 times, the physicists identified 200 resonances.

“We were fascinated by how many resonances of this type we found. This is unprecedented in the physics of ultracold quantum gases,” says Francesca Ferlaino’s team member Albert Frisch. To explain the high density of resonances, the researchers used statistical methods. By using Wigner‘s random matrix theory the scientists are able to show that different molecular levels are coupled. This has also been confirmed by computer simulations conducted by Svetlana Kotochigova’s research group at Temple University in Philadelphia, Pennsylvania, USA.

“The particular properties of erbium cause a highly complex coupling behavior between the particles, which can be described as chaotic,” explains Ferlaino. Erbium is relatively heavy and highly magnetic, which leads to anisotropic interaction between atoms. “The electron shell of these atoms do not resemble spherical shells but are highly deformed,” explains Albert Frisch.

“Therefore, the type of interaction between two erbium atoms is significantly different from other quantum gases that have been investigated so far.”

Studying chaos experimentally

In contrast to everyday speech, chaos does not mean disorder for the physicists but rather a well-ordered system that, due to its complexity, shows random behavior. Ferlaino is excited about their breakthrough:

“We have created an experiment that provides a controlled environment to study chaotic processes. We cannot characterize the behavior of single atoms in our experiment. However, by using statistical methods, we can describe the behavior of all particles.”

She compares the method with sociology, which studies the behavior of a bigger community of people, whereas psychology describes the relations between individuals. This work also provides new inroads to the investigation of ultracold gases and, thus, ultracold chemistry.” Ferlaino is convinced: “Our work represents a turning point in the world of ultracold gases.”

The experiment and statistical analysis were carried out at the Institute for Experimental Physics at the University of Innsbruck. Theoretical support was provided by John L. Bohn from the Joint Institute for Laboratory Astrophysics in Boulder, Colorado, USA and the team of Svetlana Kotochigova at Temple University in Philadelphia, Pennsylvania, USA. The Austrian researchers are supported by the Austrian Science Fund FWF and the European Research Council (ERC). 

Publication: Quantum Chaos in Ultracold Collisions of Erbium. Frisch A, Mark M, Aikawa K, and Ferlaino F, Bohn JL, Makrides C, Petrov A, and Kotochigova S. Nature 2014
DOI: 10.1038/nature13137 [arXiv:1312.1972v1, http://arxiv.org/abs/1312.1972v1]

Contact:
Univ.-Prof. Dr. Francesca Ferlaino
Institute for Experimental Physics
University of Innsbruck
Phone: +43 512 507 52440
Email: francesca.ferlaino@uibk.ac.at
http://www.uibk.ac.at/exphys/ultracold/projects/erbium/

Dr. Christian Flatz
Public Relations
University of Innsbruck
Phone: +43 512 507 32022
Email: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck

Further reports about: Erbium Phone Quantum chaotic gases particles

More articles from Physics and Astronomy:

nachricht Tiny Drops of Early Universe 'Perfect' Fluid
02.09.2015 | Brookhaven National Laboratory

nachricht Cosmic recycling
02.09.2015 | European Southern Observatory ESO

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

International research project gets high level of funding

02.09.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>