Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Chaos in Ultracold Gas Discovered

12.03.2014

The team of Francesca Ferlaino, University of Innsbruck, discovered that even simple systems, such as neutral atoms, can possess chaotic behavior, which can be revealed using the tools of quantum mechanics. The ground-breaking research, published in the journal Nature, opens up new avenues to observe the interaction between quantum particles.

The team of Francesca Ferlaino, Institute for Experimental Physics of the University of Innsbruck, Austria, has experimentally shown chaotic behavior of particles in a quantum gas.


Even simple systems, such as neutral atoms, can possess chaotic behavior.

Photo: Erbium Team, University of Innsbruck

“For the first time we have been able to observe quantum chaos in the scattering behavior of ultracold atoms,” says an excited Ferlaino. The physicists used random matrix theory to confirm their results, thus asserting the universal character of this statistical theory.

Nobel laureate Eugene Wigner formulated random matrix theory to describe complex systems in the 1950s. Although interactions between neutrons with atomic nuclei were not well-known then, Wigner was able to reliably predict properties of complex spectra by using random matrices.

... more about:
»Erbium »Phone »Quantum »chaotic »gases »particles

Today random matrix theory is applied broadly not only in physics but also in number theory, wireless information technology and risk management models in finance to name only a few fields of application. In the Bohigas-Giannoni-Schmit conjecture random matrix theory has been connected to chaotic behavior in quantum mechanical systems.

Catalan physicist Oriol Bohigas, who passed away last year, can be considered the father of quantum chaos research. 

Chaos in the quantum world

To observe quantum chaos, the physicists in Innsbruck cool erbium atoms to a few hundred nanokelvin and load them in an optical dipole trap composed of laser beams. They then influence the scattering behavior of the particles by using a magnetic field.

After holding the atoms in the trap for 400 milliseconds, the researchers record the atom number remaining in the trap. Thus, the scientists are able to determine at which magnetic field two atoms are coupled to form a weakly-bound molecule.

At this magnetic field, so-called Fano-Feshbach resonances emerge. After varying the magnetic field in each experimental cycle and repeating the experiment 14,000 times, the physicists identified 200 resonances.

“We were fascinated by how many resonances of this type we found. This is unprecedented in the physics of ultracold quantum gases,” says Francesca Ferlaino’s team member Albert Frisch. To explain the high density of resonances, the researchers used statistical methods. By using Wigner‘s random matrix theory the scientists are able to show that different molecular levels are coupled. This has also been confirmed by computer simulations conducted by Svetlana Kotochigova’s research group at Temple University in Philadelphia, Pennsylvania, USA.

“The particular properties of erbium cause a highly complex coupling behavior between the particles, which can be described as chaotic,” explains Ferlaino. Erbium is relatively heavy and highly magnetic, which leads to anisotropic interaction between atoms. “The electron shell of these atoms do not resemble spherical shells but are highly deformed,” explains Albert Frisch.

“Therefore, the type of interaction between two erbium atoms is significantly different from other quantum gases that have been investigated so far.”

Studying chaos experimentally

In contrast to everyday speech, chaos does not mean disorder for the physicists but rather a well-ordered system that, due to its complexity, shows random behavior. Ferlaino is excited about their breakthrough:

“We have created an experiment that provides a controlled environment to study chaotic processes. We cannot characterize the behavior of single atoms in our experiment. However, by using statistical methods, we can describe the behavior of all particles.”

She compares the method with sociology, which studies the behavior of a bigger community of people, whereas psychology describes the relations between individuals. This work also provides new inroads to the investigation of ultracold gases and, thus, ultracold chemistry.” Ferlaino is convinced: “Our work represents a turning point in the world of ultracold gases.”

The experiment and statistical analysis were carried out at the Institute for Experimental Physics at the University of Innsbruck. Theoretical support was provided by John L. Bohn from the Joint Institute for Laboratory Astrophysics in Boulder, Colorado, USA and the team of Svetlana Kotochigova at Temple University in Philadelphia, Pennsylvania, USA. The Austrian researchers are supported by the Austrian Science Fund FWF and the European Research Council (ERC). 

Publication: Quantum Chaos in Ultracold Collisions of Erbium. Frisch A, Mark M, Aikawa K, and Ferlaino F, Bohn JL, Makrides C, Petrov A, and Kotochigova S. Nature 2014
DOI: 10.1038/nature13137 [arXiv:1312.1972v1, http://arxiv.org/abs/1312.1972v1]

Contact:
Univ.-Prof. Dr. Francesca Ferlaino
Institute for Experimental Physics
University of Innsbruck
Phone: +43 512 507 52440
Email: francesca.ferlaino@uibk.ac.at
http://www.uibk.ac.at/exphys/ultracold/projects/erbium/

Dr. Christian Flatz
Public Relations
University of Innsbruck
Phone: +43 512 507 32022
Email: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck

Further reports about: Erbium Phone Quantum chaotic gases particles

More articles from Physics and Astronomy:

nachricht Physicists solve quantum tunneling mystery: ANU media release
27.05.2015 | Australian National University

nachricht Linking superconductivity and structure
27.05.2015 | Carnegie Institution

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Technology that feels good

27.05.2015 | Information Technology

A chip placed under the skin for more precise medicine

27.05.2015 | Health and Medicine

Linking superconductivity and structure

27.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>