Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Q is for quantum and 'Q-life'

08.07.2009
As the world celebrates Charles Darwin, who was born 200 years ago, physicists can be forgiven a certain jealousy at the spotlight being placed on his profound legacy.

But physicists have in fact had a huge impact on biology – no more so than in helping to discover the structure of DNA and in developing medical-imaging techniques like MRI. The July issue of Physics World marks those achievements and examines at some of the ways in which current ideas in physics are still changing biology.

Features in this issue include a close look at how physics is informing our understanding of cells and of the brain, while Paul Davies, a physicist, astrobiologist and director of BEYOND: Center for Fundamental Concepts in Science at Arizona State University, suggests there are tentative signs that life itself may have arisen as a result of physicists' long-cherished theory of quantum mechanics.

Many of the pioneers of quantum mechanics, such as Niels Bohr, Werner Heisenberg, and Erwin Schrödinger, hoped that their theory, which proved so successful in explaining non-living matter, could one day explain living matter too. But although quantum mechanics can explain the sizes and shapes of molecules -- and how they are bonded together -- no clear-cut "life principle" has emerged from the quantum realm.

Still, Davies points to increasing, albeit controversial, evidence that suggest that fundamental quantum processes like quantum tunnelling and quantum superpositions can play a fundamental role in biology.

In particular, researchers think that quantum mechanics could lie at the heart of the mechanism by which the European robin can navigate over spectacularly long distances by means of the Earth's magnetic field. Others, meanwhile, think that quantum mechanics is essential to the process of photosynthesis.

Davies also asks whether some form of "quantum replicator", or "Q-life", could provide a solution to the challenge of understanding the origin of life itself. Most researchers suppose that life began with a set of self-replicating digital-information-carrying molecules or a self-catalyzing chemical cycle but, Davies argues, they key properties of life -- replication with variation and natural selection -- does not logically require structures to be replicated. "It is sufficient," writes Davies, "that information is replicated, which opens up the possibility that life may have started with some form of quantum replicator."

The advantage of copying information is that it would be much faster than building duplicate molecular structures, while quantum fluctuations provides a natural mechanism for variation and coherent superpositions could let life Q-life evolve rapidly by exploring an entire "landscape" of possibilities at the same time.

As Davies writes, "Life has had three and a half billion years to solve problems and optimise efficiency. If quantum mechanics can enhance its performance, or open up new possibilities, it is likely that life will have discovered the fact and exploited the opportunities."

Joseph Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>