Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Q is for quantum and 'Q-life'

08.07.2009
As the world celebrates Charles Darwin, who was born 200 years ago, physicists can be forgiven a certain jealousy at the spotlight being placed on his profound legacy.

But physicists have in fact had a huge impact on biology – no more so than in helping to discover the structure of DNA and in developing medical-imaging techniques like MRI. The July issue of Physics World marks those achievements and examines at some of the ways in which current ideas in physics are still changing biology.

Features in this issue include a close look at how physics is informing our understanding of cells and of the brain, while Paul Davies, a physicist, astrobiologist and director of BEYOND: Center for Fundamental Concepts in Science at Arizona State University, suggests there are tentative signs that life itself may have arisen as a result of physicists' long-cherished theory of quantum mechanics.

Many of the pioneers of quantum mechanics, such as Niels Bohr, Werner Heisenberg, and Erwin Schrödinger, hoped that their theory, which proved so successful in explaining non-living matter, could one day explain living matter too. But although quantum mechanics can explain the sizes and shapes of molecules -- and how they are bonded together -- no clear-cut "life principle" has emerged from the quantum realm.

Still, Davies points to increasing, albeit controversial, evidence that suggest that fundamental quantum processes like quantum tunnelling and quantum superpositions can play a fundamental role in biology.

In particular, researchers think that quantum mechanics could lie at the heart of the mechanism by which the European robin can navigate over spectacularly long distances by means of the Earth's magnetic field. Others, meanwhile, think that quantum mechanics is essential to the process of photosynthesis.

Davies also asks whether some form of "quantum replicator", or "Q-life", could provide a solution to the challenge of understanding the origin of life itself. Most researchers suppose that life began with a set of self-replicating digital-information-carrying molecules or a self-catalyzing chemical cycle but, Davies argues, they key properties of life -- replication with variation and natural selection -- does not logically require structures to be replicated. "It is sufficient," writes Davies, "that information is replicated, which opens up the possibility that life may have started with some form of quantum replicator."

The advantage of copying information is that it would be much faster than building duplicate molecular structures, while quantum fluctuations provides a natural mechanism for variation and coherent superpositions could let life Q-life evolve rapidly by exploring an entire "landscape" of possibilities at the same time.

As Davies writes, "Life has had three and a half billion years to solve problems and optimise efficiency. If quantum mechanics can enhance its performance, or open up new possibilities, it is likely that life will have discovered the fact and exploited the opportunities."

Joseph Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>