Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Q is for quantum and 'Q-life'

08.07.2009
As the world celebrates Charles Darwin, who was born 200 years ago, physicists can be forgiven a certain jealousy at the spotlight being placed on his profound legacy.

But physicists have in fact had a huge impact on biology – no more so than in helping to discover the structure of DNA and in developing medical-imaging techniques like MRI. The July issue of Physics World marks those achievements and examines at some of the ways in which current ideas in physics are still changing biology.

Features in this issue include a close look at how physics is informing our understanding of cells and of the brain, while Paul Davies, a physicist, astrobiologist and director of BEYOND: Center for Fundamental Concepts in Science at Arizona State University, suggests there are tentative signs that life itself may have arisen as a result of physicists' long-cherished theory of quantum mechanics.

Many of the pioneers of quantum mechanics, such as Niels Bohr, Werner Heisenberg, and Erwin Schrödinger, hoped that their theory, which proved so successful in explaining non-living matter, could one day explain living matter too. But although quantum mechanics can explain the sizes and shapes of molecules -- and how they are bonded together -- no clear-cut "life principle" has emerged from the quantum realm.

Still, Davies points to increasing, albeit controversial, evidence that suggest that fundamental quantum processes like quantum tunnelling and quantum superpositions can play a fundamental role in biology.

In particular, researchers think that quantum mechanics could lie at the heart of the mechanism by which the European robin can navigate over spectacularly long distances by means of the Earth's magnetic field. Others, meanwhile, think that quantum mechanics is essential to the process of photosynthesis.

Davies also asks whether some form of "quantum replicator", or "Q-life", could provide a solution to the challenge of understanding the origin of life itself. Most researchers suppose that life began with a set of self-replicating digital-information-carrying molecules or a self-catalyzing chemical cycle but, Davies argues, they key properties of life -- replication with variation and natural selection -- does not logically require structures to be replicated. "It is sufficient," writes Davies, "that information is replicated, which opens up the possibility that life may have started with some form of quantum replicator."

The advantage of copying information is that it would be much faster than building duplicate molecular structures, while quantum fluctuations provides a natural mechanism for variation and coherent superpositions could let life Q-life evolve rapidly by exploring an entire "landscape" of possibilities at the same time.

As Davies writes, "Life has had three and a half billion years to solve problems and optimise efficiency. If quantum mechanics can enhance its performance, or open up new possibilities, it is likely that life will have discovered the fact and exploited the opportunities."

Joseph Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>