Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Puzzle of how spiral galaxies set their arms comes into focus

03.04.2013
As the shapes of galaxies go, the spiral disk — with its characteristic pinwheel profile — is by far the most pedestrian.

Our own Milky Way, astronomers believe, is a spiral. Our solar system and Earth reside somewhere near one of its filamentous, swept-back arms. And nearly 70 percent of the galaxies closest to the Milky Way are spirals, suggesting they have taken the most ordinary of galactic forms in a universe with billions of galaxies.

But despite their common morphology, how galaxies like ours get and maintain their characteristic arms has proved to be an enduring puzzle in astrophysics. How do the arms of spiral galaxies arise? Do they change or come and go over time?

The answers to these and other questions are now coming into focus as researchers capitalize on powerful new computer simulations to follow the motions of as many as 100 million "stellar particles" as gravity and other astrophysical forces sculpt them into familiar galactic shapes. Writing April 1 in the Astrophysical Journal, a team of researchers from the University of Wisconsin-Madison and Harvard-Smithsonian Center for Astrophysics report simulations that seem to resolve longstanding questions about the origin and life history of spiral arms in disk galaxies.

"We show for the first time that stellar spiral arms are not transient features, as claimed for several decades," says UW-Madison astrophysicist Elena D'Onghia, who led the new research along with Harvard-Smithsonian Center for Astrophysics colleagues Mark Vogelsberger and Lars Hernquist. "They are self-perpetuating, persistent and surprisingly long lived."

The origin and fate of the emblematic spiral arms in disk galaxies have been debated by astrophysicists for decades, with two theories predominating: One holds that the arms come and go over time. A second and widely held theory is that the material that makes up the arms – stars, gas and dust – is affected by differences in gravity and jams up, like cars at rush hour, sustaining the arms for long periods.

The new results fall somewhere in between the two theories and suggest that the arms arise in the first place as a result of the influence of giant molecular clouds, star forming regions or nurseries common in galaxies. Introduced into the simulation, the clouds, says D'Onghia, a UW-Madison professor of astronomy, act as "perturbers" and are enough to not only initiate the formation of spiral arms but to sustain them indefinitely.

"We find they are forming spiral arms," explains D'Onghia. "Past theory held the arms would go away with the perturbations removed, but we see that (once formed) the arms self-perpetuate, even when the perturbations are removed. It proves that once the arms are generated through these clouds, they can exist on their own through (the influence of) gravity, even in the extreme when the perturbations are no longer there."

The new study modeled stand-alone disk galaxies, those not influenced by another nearby galaxy or object. Some recent studies have explored the likelihood that spiral galaxies with a close neighbor — a nearby dwarf galaxy, for example — get their arms as gravity from the satellite galaxy pulls on the disk of its neighbor.

According to Vogelsberger and Hernquist, the new simulations can be used to reinterpret observational data, looking at both the high-density molecular clouds as well as gravitationally induced holes in space as the mechanisms that drive the formation of the characteristic arms of spiral galaxies.

Terry Devitt
608-262-8282
trdevitt@wisc.edu
EDITORS: Images are available to accompany this story: High-resolution still image at http://www.news.wisc.edu/newsphotos/galaxies13.html; video at https://www.youtube.com/watch?v=-ii0nksV2lY.

Puzzle of how spiral galaxies set their arms comes into focus.

Elena D'Onghia | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>