Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Puzzle of how spiral galaxies set their arms comes into focus

As the shapes of galaxies go, the spiral disk — with its characteristic pinwheel profile — is by far the most pedestrian.

Our own Milky Way, astronomers believe, is a spiral. Our solar system and Earth reside somewhere near one of its filamentous, swept-back arms. And nearly 70 percent of the galaxies closest to the Milky Way are spirals, suggesting they have taken the most ordinary of galactic forms in a universe with billions of galaxies.

But despite their common morphology, how galaxies like ours get and maintain their characteristic arms has proved to be an enduring puzzle in astrophysics. How do the arms of spiral galaxies arise? Do they change or come and go over time?

The answers to these and other questions are now coming into focus as researchers capitalize on powerful new computer simulations to follow the motions of as many as 100 million "stellar particles" as gravity and other astrophysical forces sculpt them into familiar galactic shapes. Writing April 1 in the Astrophysical Journal, a team of researchers from the University of Wisconsin-Madison and Harvard-Smithsonian Center for Astrophysics report simulations that seem to resolve longstanding questions about the origin and life history of spiral arms in disk galaxies.

"We show for the first time that stellar spiral arms are not transient features, as claimed for several decades," says UW-Madison astrophysicist Elena D'Onghia, who led the new research along with Harvard-Smithsonian Center for Astrophysics colleagues Mark Vogelsberger and Lars Hernquist. "They are self-perpetuating, persistent and surprisingly long lived."

The origin and fate of the emblematic spiral arms in disk galaxies have been debated by astrophysicists for decades, with two theories predominating: One holds that the arms come and go over time. A second and widely held theory is that the material that makes up the arms – stars, gas and dust – is affected by differences in gravity and jams up, like cars at rush hour, sustaining the arms for long periods.

The new results fall somewhere in between the two theories and suggest that the arms arise in the first place as a result of the influence of giant molecular clouds, star forming regions or nurseries common in galaxies. Introduced into the simulation, the clouds, says D'Onghia, a UW-Madison professor of astronomy, act as "perturbers" and are enough to not only initiate the formation of spiral arms but to sustain them indefinitely.

"We find they are forming spiral arms," explains D'Onghia. "Past theory held the arms would go away with the perturbations removed, but we see that (once formed) the arms self-perpetuate, even when the perturbations are removed. It proves that once the arms are generated through these clouds, they can exist on their own through (the influence of) gravity, even in the extreme when the perturbations are no longer there."

The new study modeled stand-alone disk galaxies, those not influenced by another nearby galaxy or object. Some recent studies have explored the likelihood that spiral galaxies with a close neighbor — a nearby dwarf galaxy, for example — get their arms as gravity from the satellite galaxy pulls on the disk of its neighbor.

According to Vogelsberger and Hernquist, the new simulations can be used to reinterpret observational data, looking at both the high-density molecular clouds as well as gravitationally induced holes in space as the mechanisms that drive the formation of the characteristic arms of spiral galaxies.

Terry Devitt
EDITORS: Images are available to accompany this story: High-resolution still image at; video at

Puzzle of how spiral galaxies set their arms comes into focus.

Elena D'Onghia | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>