Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting a new spin on tokamak disruptions

13.11.2013
Rapid plasma rotation may be the key to softening the blow of powerful plasma disruptions

In the quest for fusion energy on earth, researchers use magnetic fields to insulate hot plasma from the walls of the chamber to maintain the reaction and prevent damage to interior surfaces.


The tiled walls inside the Alcator C-Mod tokamak might say they've been scarred by sudden disruptions in the hydrogen fuel that periodically impacts them. MIT researchers are discovering ways to spread out the focused energy from these disruptions so that the vessel walls are not damaged.

Credit: M. Garrett

In the tokamak, a leading contender to achieve a sustained fusion burn, electrical currents flowing in the plasma inside the doughnut-shaped vacuum chamber can become unstable if the plasma current or pressure gets too high or the control system breaks, leading to a sudden termination of the discharge.

This sudden termination, called a disruption, can produce concentrated heating and mechanical forces on a section of the interior surface, forcing the plant to shut down for repairs.

Researchers at MIT's Plasma Science and Fusion Center (PSFC), General Atomics, Oak Ridge National Laboratory, University of Washington, and the University of California, San Diego, believe that if the intense energy of these disruptions could be uniformly spread out around the interior of the vessel, the plasma could be prevented from melting the wall—a necessity for the next-step fusion device, ITER, under construction in Cadarache, France. Several groundbreaking experiments at the Alcator CMod tokamak at MIT and the DIII-D tokamak in San Diego are guiding the way towards better protection for the vessel walls during disruptions.

Scientists at Alcator C-Mod and DIII-D investigating plasma disruptions have discovered that injecting gases heavier than the background hydrogen fuel (such as argon or neon) just before an impending disruption will spread the resulting energy around the vessel.

However, the Alcator C-Mod team found that the argon or neon does not uniformly spread out quite enough to prevent damage. Sometimes the heat load is still asymmetric, concentrated in one sector of the device. Even using multiple injection sites around the vessel does not necessarily improve the asymmetry, and sometimes heightens it (Olynyk, 2012 APS DPP). To explain this unexpected result, computer models (Izzo, 2012 APS DPP) indicated that internal instabilities within the plasma should determine the radiation asymmetry rather than the distribution of gas injectors.

The DIII-D team has for the first time tested the theory that internal plasma instabilities determine the radiation asymmetry. The team used 3D magnetic fields to "lock" the plasma instability in one direction or another. They found that by varying the direction in which the instability locked, they could reproducibly change the amount of energy deposited at a given location within the vessel, as expected from the computer. Moreover, no indication of the expected localized heating around the gas injector itself was found. The DIII-D results show that simply increasing the number of gas injectors does not alleviate radiation asymmetry during disruption mitigation. The results do, however, suggest that rotating the instability could spread the heat more evenly.

Using rotation to lower the heat load to the walls is exactly what was discovered at the Alcator C-Mod tokamak. The Alcator C-Mod team has discovered that the plasma can spontaneously rotate rapidly during a portion of the disruption known as the "quench." The rotation appears to be driven by smaller-scale instabilities, and the rotation ends up moving the radiating regions around the vessel quickly and thus lowering the average heat load. Future research will determine if we can control or encourage this spontaneous rotation, and thus distribute the heat more uniformly to the wall.

Research Contacts:

Robert Granetz, MIT, (617)-253-8634, granetz@mit.edu

N.W. Eidietis, General Atomics, (858)-455-2459, eidietis@fusion.gat.com

N. Commaux, Oak Ridge National Laboratory, (858)-455-2073

V.A Izzo, University of California, San Diego, (858)-455-4144, izzo@fusion.gat.com

Abstracts:

CO4.00009 Effects of Magnetic Shear on Toroidal Rotation in C-Mod Plasmas with LHCD
Session CO4: C-Mod Tokamak
2:00 PM–5:00 PM, Monday, November 11, 2013
Room: Plaza D
GO4.00002 Overview of DIII-D Disruption Mitigation Experimental Results
Session GO4: DIII-D Tokamak
9:30 AM–12:30 PM, Tuesday, November 12, 2013
Room: Plaza D

James Riordon | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>