Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pushing Light Beyond Its Known Limits

Scientists at the University of Adelaide have made a breakthrough that could change the world's thinking on what light is capable of.

The researchers in the University's new Institute for Photonics & Advanced Sensing (IPAS) have discovered that light within optical fibers can be squeezed into much tighter spaces than was previously believed possible.

Optical fibers usually act like pipes for light, with the light bouncing around inside the pipe. As you shrink down the size of the fiber, the light becomes more and more confined too, until you reach the ultimate limit – the point beyond which light cannot be squeezed any smaller.

This ultimate point occurs when the strand of glass is just a few hundred nanometers in diameter, about one thousandth of the size of a human hair. If you go smaller than this, light begins to spread out again.

The Adelaide researchers have discovered they can now push beyond that limit by at least a factor of two.

They can do this due to new breakthroughs in the theoretical understanding of how light behaves at the nanoscale, and thanks to the use of a new generation of nanoscale optical fibers being developed at the Institute.

This discovery is expected to lead to more efficient tools for optical data processing in telecommunications networks and optical computing, as well as new light sources.

IPAS Research Fellow Dr Shahraam Afshar has made this discovery ahead of today's launch of the new Institute for Photonics & Advanced Sensing.

The Australian Government, South Australian Government, Defence Science & Technology Organisation (DSTO), Defence SA and the University of Adelaide have committed a combined total of more than $38 million to support the establishment of the new Institute.

IPAS is a world leader in the science and application of light, developing unique lasers, optical fibers and sensors to measure various aspects of the world around us. A strong focus of the new Institute is in collaboration with other fields of research to find solutions to a range of problems.

"By being able to use our optical fibers as sensors – rather than just using them as pipes to transmit light – we can develop tools that, for example, could easily detect the presence of a flu virus at an airport; could help IVF (in vitro fertilization) specialists to determine which egg should be chosen for fertilization; could gauge the safety of drinking water; or could alert maintenance crews to corrosion occurring in the structure of an aircraft," says Professor Tanya Monro, Federation Fellow at the University of Adelaide and Director of IPAS.

Professor Monro says Dr Afshar's discovery is "a fundamental breakthrough in the science of light".

Another IPAS researcher, Dr Yinlan Ruan, has recently created what is thought to be the world's smallest hole inside an optical fiber – just 25 nanometers in diameter.

"These breakthroughs feed directly into our applied work to develop nanoscale sensors, and they are perfect examples of the culture of research excellence that exists among our team members," Professor Monro says.

"They will enable us to study the applications of light at much smaller scales than we've ever thought possible. It will help us to better understand and probe our world in ever smaller dimensions."

Media contact:

Professor Tanya Monro
Director, Institute for Photonics & Advanced Sensing
The University of Adelaide
Phone: +61 8 8303 3955

Professor Tanya Monro | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>