Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulsating Star Sheds Light on Exoplanet

31.07.2013
A team of researchers has devised a way to measure the internal properties of stars—a method that offers more accurate assessments of their orbiting planets.

The research, which appears in Proceedings of the National Academy of Sciences, was conducted by a multi-national team of scientists, including physicists at New York University, Princeton University, and the Max Planck Institute for Solar System Research.


Image courtesy of MPI for Solar System Research/Mark A. Garlick (www.markgarlick.com).

An artistic rendering of HD 52265 and its orbiting Jupiter-like planet.

The researchers examined HD 52265—a star approximately 92 light years away and nearly 20 percent more massive than our Sun. More than a decade ago, scientists identified an exopanet—a planet outside our Solar System—in the star’s orbit. HD 52265, then, served as an ideal model for both measuring stars’ properties and how such properties can shed light on planetary systems.

Previously, scientists inferred stars’ properties, such as radius, mass, and age, by considering observations of their brightness and color. Often these stars’ properties were not known to sufficient accuracy to further characterize the nearby planets.

In the PNAS study, the scientists adopted a new approach to characterize star-planet systems: asteroseismology, which identifies the internal properties of stars by measuring their surface oscillations. Some have compared this approach to seismologists’ use of earthquake oscillations to examine the earth’s interior.

Here, they were able to make several assessments of the star’s traits, including its mass, radius, age, and—for the first time— internal rotation. They used the COROT space telescope, part of a space mission led by the French Space Agency (CNES) in conjunction with the European Space Agency (ESA), to detect tiny fluctuations in the intensity of starlight caused by starquakes. The researchers confirmed the validity of the seismic results by comparing them with independent measurements of related phenomena. These included the motion of dark spots on the star’s surface and the star’s spectroscopic rotational velocity.

Unlike other methods, the technique of asteroseismology returns both the rotation period of the star and the inclination of the rotation axis to the line of sight.

The scientists could then use these findings to make a more definitive determination of an orbiting exoplanet. While it had previously been identified as an exoplanet by other scientists, some raised doubts about this conclusion, positing that it could actually be a brown dwarf—an object too small to be a star and too large to be a planet.

But, armed with the precise calculations yielded by asteroseismology, the researchers on the PNAS study were able to enhance the certainty of the earlier conclusion. Specifically, given the inclination of the rotation axis of HD 52265 and the minimum mass of the nearby exoplanet, the researchers could infer the true mass of the latter—which was calculated to be roughly twice that of our planet Jupiter and therefore too small to be a brown dwarf.

The study’s authors included: Katepalli Sreenivasan, president of Polytechnic Institute of NYU and dean of engineering at NYU; Shravan Hanasoge, an associate research scholar in geosciences at Princeton University and a visiting scholar at NYU’s Courant Institute of Mathematical Sciences; and Laurent Gizon, director of the Max Planck Institute for Solar System Research and a professor at the University of Goettingen in Germany.

James Devitt | Newswise
Further information:
http://www.nyu.edu

Further reports about: Exoplanet LIGHT Max Planck Institute NYU PNAS Princeton Pulsating Solar Decathlon Space brown dwarf

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>