Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulsar Explores the Galaxy’s Supermassive Black Hole

15.08.2013
The recent discovery of a pulsar possibly less than half a light year from Sagittarius A*, the nearest supermassive black hole candidate at the centre of the Galaxy, has shown that a large scale magnetic field pervades the area around it.

Because this field is gradually swallowed by the black hole, it can explain theories of how the black hole feeds and the radio through to X-ray emission associated with this enigmatic object.


Artist’s impression of PSR J1745-2900, a pulsar with a very high magnetic field (“magnetar”) in direct vicinity of the central source of our Galaxy, a supermassive black hole of approximately 4 million times the mass of our sun. Measurements of the pulsar imply that a strong magnetic field exists in the vicinity around the black hole.
MPIfR/Ralph Eatough


The Effelsberg radio telescope during regular observations of the Galactic Centre region for unidentified pulsars. The Galactic Centre is in the Sagittarius constellation, which is extremely close to the horizon in the southern direction, and is only visible for approximately 2 hours and 25 minutes every day.
MPIfR/Ralph Eatough

An international group of scientists predominantly from the MPIfR in Bonn, Germany used the institute's giant 100-m radio telescope near Effelsberg to investigate the pulsar at different radio frequencies. The results are published in this week's "Nature".

The discovery of a pulsar closely orbiting the candidate supermassive black hole at the centre of the Milky Way (called Sagittarius A*, or Sgr A* in short) has been one of the main aims of pulsar astronomers for the last 20 years. Pulsars, those extremely precise cosmic clocks, could be used to measure the properties of space and time around this object, and to see if Einstein’s theory of General Relativity could hold up to the strictest tests.

Shortly after the announcement of a flaring X-ray source in the direction of the Galactic centre by NASA’s Swift telescope, and the subsequent discovery of pulsations with a period of 3.76 seconds by NASA’s NuSTAR telescope, a radio follow-up program was started at the Effelsberg radio observatory of the Max Planck Institute for Radio Astronomy (MPIfR).

“As soon as we heard about the discovery of regular pulsations with the NuSTAR telescope we pointed the Effelsberg 100-m dish in the direction of the Galactic centre”, says Ralph Eatough from MPIfR’s Fundamental Physics Research department, the lead author of the study. “On our first attempt the pulsar was not clearly visible, but some pulsars are stubborn and require a few observations to be detected. The second time we looked, the pulsar had become very active in the radio band and was very bright. I could hardly believe that we had finally detected a pulsar in the Galactic centre!” Because this pulsar is so special, the research team spent a lot of effort to prove that it was a real object in deep space and not due to man-made radio interference created on Earth.

Additional observations were performed in parallel and subsequently with other radio telescopes around the world (Jodrell Bank, Very Large Array, Nançay). "We were too excited to sleep in between observations! We were calculating flux densities at 6am on Saturday morning and we could not believe that this magnetar had just turned on so bright." says Evan Keane from the Jodrell Bank Observatory. Other collaborations worked at different telescopes (Australia Telescope/ATCA, Parkes and Green Bank Telescope). A research paper on the ATCA results by Shannon & Johnston appears in this week’s issue of the British journal MNRAS.

“The Effelsberg radio telescope was built such that it could observe the Galactic centre. And 40 years later it detects the first radio pulsar there”, explains Heino Falcke, professor at Radboud Universiteit Nijmegen. “Sometimes we have to be patient. It was a laborious effort, but finally we succeeded.”

The newly found pulsar, labeled PSR J1745-2900, belongs to a specific subgroup of pulsars, the so-called magnetars. Magnetars are pulsars with extremely high magnetic fields of the order of 100 million (10^8) Tesla, about 1000 times stronger than the magnetic fields of ordinary neutron stars, or 100,000 billion times the Earth’s magnetic field. The emission from these objects is also known to be highly polarized. Measurements of the rotation of the plane of polarization caused by an external magnetic field (the so-called Faraday effect) can be used to infer the strength of the magnetic field along the line-of-sight to the pulsar.

The magnetic field strength in the vicinity of the black hole at the centre of the Galaxy is an important property. The black hole is gradually swallowing its surroundings (mainly hot ionized gas) in a process of accretion. Magnetic fields caused by this in-falling gas can influence the structure and dynamics of the accretion flow, helping or even hindering the process. The new pulsar has allowed measurements of the strength of the magnetic field at the beginning of the accretion flow to the central black hole, indicating there is indeed a large-scale and strong magnetic field.

“In order to understand the properties of Sgr A*, we need to comprehend the accretion of gas into the black hole”, says Michael Kramer, director at MPIfR and head of its Fundamental Physics research department. “However, up to now, the magnetization of the gas, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Our study changes that by using the discovered pulsar to probe the strength of the magnetic field at the start of this accretion flow of gas into the central object.”

If this magnetic field caused by the ionized gas is accreted down to the event horizon it can also explain the radio through to X-ray emission long associated with the black hole itself. Also super strong magnetic fields at the black hole may suppress accretion, explaining why Sgr A* appears to be starving in comparison to supermassive black holes in other galaxies.

There is now convincing evidence that the centre of our Galaxy harbours a super-massive black hole. Scientists at the Max Planck Institute for Extraterrestrial Physics in Garching and elsewhere have measured its mass very precisely but many properties are not yet understood. The discovery of the magnetar in its direct vicinity helps to explain some of the observations.

Magnetars are a rare breed in the pulsar population (only 4 out of ~2000 pulsars known to date) suggesting there might indeed be a large population of pulsars in the Galactic centre. Why they have not been detected by previous pulsar surveys is not yet understood. It was thought that an extremely strong scattering of radio waves could be the reason but the discovery of PSR J1745-2900 seems to go against this idea. The scattering towards the Galactic centre could be more complex and patchy, or may increase closer to the black hole in the centre.

Unfortunately the newly found pulsar is still too distant from the black hole to accurately probe the space-time since its minimal orbital period amounts to ~500 years. Also magnetars are notoriously noisy and thus inaccurate clocks. “Ideally we would like to find faster spinning pulsars even closer to Sgr A* allowing more accurate timing”, says Ralph Eatough. “The new pulsar has considerably raised our hopes of this possibility for the future.”

Original Paper:
A strong magnetic field around the supermassive black hole at the centre of the Galaxy. R.P. Eatough, H. Falcke, R. Karuppusamy, K. J. Lee, D. J. Champion, E. F. Keane, G. Desvignes, D. H. F. M. Schnitzeler, L. G. Spitler, M. Kramer, B. Klein, C. Bassa, G. C. Bower, A. Brunthaler, I. Cognard, A. T. Deller, P. B. Demorest, P. C. C. Freire, A. Kraus, A. G. Lyne, A. Noutsos, B. Stappers & N.Wex, Nature, August 14, 2013 (DOI: 10.1038/nature12499).
Contact:
Dr. Ralph Eatough,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49(0)228-525-481
E-mail: reatough@mpifr-bonn.mpg.de
Prof. Dr. Michael Kramer,
Director and Head of Research Department "Fundamental Physics in Radio Astronomy",
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49(0)228-525-278
E-mail: mkramer@mpifr-bonn.mpg.de
Prof. Dr. Heino Falcke,
Radboud Universiteit Nijmegen, Niederlande.
Fon: +31-24-3652020
E-mail: h.falcke@astro.ru.nl
Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Further information:
http://www3.mpifr-bonn.mpg.de/public/pr/pr-magnetar-aug2013-en.html

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>