Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Proton dripping tests a fundamental force in nature

Like gravity, the strong interaction is a fundamental force of nature. It is the essential "glue" that holds atomic nuclei—composed of protons and neutrons— together to form atoms, the building blocks of nearly all the visible matter in the universe.

Despite its prevalence in nature, researchers are still searching for the precise laws that govern the strong force. However, the recent discovery of an extremely exotic, short-lived nucleus called fluorine-14 in laboratory experiments may indicate that scientists are gaining a better grasp of these rules.

Fluorine-14 comprises nine protons and five neutrons. It exists for a tiny fraction of a second before a proton "drips" off, leaving an oxygen-13 nucleus behind. A team of researchers led by James Vary, a professor of physics at Iowa State University, first predicted the properties of fluorine-14 with the help of scientists in Lawrence Berkeley National Laboratory's (Berkeley Lab's) Computational Research Division, as well as supercomputers at the National Energy Research Scientific Computing Center (NERSC) and the Oak Ridge Leadership Computing Facility. These fundamental predictions served as motivations for experiments conducted by Vladilen Goldberg's team at Texas A&M's Cyclotron Institute, which achieved the first sightings of fluorine-14.

"This is a true testament to the predictive power of the underlying theory," says Vary. "When we published our theory a year ago, fluorine-14 had never been observed experimentally. In fact, our theory helped the team secure time on their newly commissioned cyclotron to conduct their experiment. Once their work was done, they saw virtually perfect agreement with our theory."

He notes that the ability to reliably predict the properties of exotic nuclei with supercomputers helps pave the way for researchers to cost-effectively improve designs of nuclear reactors, to predict results from next generation accelerator experiments that will produce rare and exotic isotopes, as well as to better understand phenomena such as supernovae and neutron stars.

"We will never be able to travel to a neutron star and study it up close, so the only way to gain insights into its behavior is to understand how exotic nuclei like fluorine-14 behave and scale up," says Vary.

Developing a Computer Code to Simulate the Strong Force

Including fluorine-14, researchers have so far discovered about 3,000 nuclei in laboratory experiments and suspect that 6,000 more could still be created and studied. Understanding the properties of these nuclei will give researchers insights into the strong force, which could in turn be applied to develop and improve future energy sources.

With these goals in mind, the Department of Energy's Scientific Discovery through Advanced Computing (SciDAC) program brought together teams of theoretical physicists, applied mathematicians, computer scientists and students from universities and national laboratories to create a computational project called the Universal Nuclear Energy Density Functional (UNEDF), which uses supercomputers to predict and understand behavior of a wide range of nuclei, including their reactions, and to quantify uncertainties. In fact, fluorine-14 was simulated with a code called Many Fermion Dynamics–nuclear (MFDn) that is part of the UNEDF project.

According to Vary, much of this code was developed on NERSC systems over the past two decades. "We started by calculating how two or three neutrons and protons interact, then built up our interactions from there to predict the properties of exotic nuclei like fluorine-14 with nine protons and five neutrons," says Vary. "We actually had these capabilities for some time, but were waiting for computing power to catch up. It wasn't until the past three or four years that computing power became available to make the runs."

Through the SciDAC program, Vary's team partnered with Ng and other scientists in Berkeley Lab's CRD who brought discrete and numerical mathematics expertise to improve a number of aspects in the code. "The prediction of fluorine-14 would not have been possible without SciDAC. Before our collaboration, the code had some bottlenecks, so performance was an issue," says Esmond Ng, who heads Berkeley Lab's Scientific Computing Group. Vary and Ng lead teams that are part of the UNEDF collaboration.

"We would not have been able to solve this problem without help from Esmond and the Berkeley Lab collaborators, or the initial investment from NERSC, which gave us the computational resources to develop and improve our code," says Vary. "It just would have taken too long. These contributions improved performance by a factor of three and helped us get more precise numbers."

He notes that a single simulation of fluorine-14 would have taken 18 hours on 30,000 processor cores, without the improvements implemented with the Berkeley Lab team's help. However, thanks to the SciDAC collaboration, each final run required only 6 hours on 30,000 processors. The final runs were performed on the Jaguar system at the Oak Ridge Leadership Computing Facility with an Innovative and Novel Computational Impact on Theory and Experiment (INCITE) allocation from the Department of Energy's Office of Advanced Scientific Computing Research (ASCR).

The paper that predicts fluorine-14 was published in Physical Letters C Rapid Communications. In addition to Vary, Pieter Maris, also of Iowa State, and Andrey Shirokov of Moscow State University were co-authors on the paper. In addition to Ng, Chao Yang and Philip Sternberg (a former postdoc), also of Berkeley Lab, and Masha Sosonkina of Ames Laboratory at Iowa State University contributed to the project.

For additional information on UNEDF visit:

The paper that describes the first observations of fluorine-14 was published in Physics Letters B.

For more news from Berkeley Lab Computing Sciences, please visit:

Linda Vu | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>



Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

More VideoLinks >>>