Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proton beam experiments open new areas of research

06.12.2011
By focusing proton beams using high-intensity lasers, a team of scientists have discovered a new way to heat material and create new states of matter in the laboratory.

Researchers from Lawrence Livermore National Laboratory; Jacobs School of Engineering at the University of California, San Diego; Los Alamos National Laboratory; Hemoltz-Zentrum Dresden-Rossendorf of Germany; Technische Universitat Darmstadt of Germany, and General Atomics of San Diego unveiled new findings about how proton beams can be used in myriad applications.

Using the Trident sub-picosecond laser at Los Alamos, the team generated and focused a proton beam using a cone-shaped target. The protons were found to have unexpectedly curved trajectories due to the large electric fields in the beam. A sheath electric field also channeled the proton beam through the cone tip, substantially improving the beam focus.

"These results agree well with our particle simulations and provide the physics basis for many future applications," said Mark Foord, one of the LLNL scientists on the team.

Other Livermore researchers include lead author Teresa Bartal (also a UCSD Ph.D student and Lawrence scholar), Claudio Bellei, Michael Key, Pravesh Patel, Drew Higginson and Harry McLean. The research appears in the Dec. 4 issue of the journal, Nature Physics.

Bartal said the experiments provide a new understanding of the physics involved in proton focusing, which affects how proton beams can be used in the future -- from heating material to creating new types of matter that couldn't be made by any other means, to medical applications and insights into planetary science.

"The ability to generate high-intensity well-focused proton beams can open the door to new regimes in high-energy density science," Bartal said.

One example includes focusing a proton beam on a solid density or compressed material creating millions of atmospheres of pressure, allowing the study of the properties of warm dense matter found in the interior of giant planets such as Jupiter.

The UCSD team was led by Farhat Beg of Jacobs School of Engineering and several of his students participated in this experiment.

"This work has given a new direction to the conventional thinking of proton beam focusing in short-pulse laser matter interaction," Beg said. "Surely it will impact heating of pre-compressed materials to temperatures observed at the core of the sun and any future applications in proton oncology using high-intensity lasers."

Laser-produced proton beams also are making an impact on medical applications such as isotope production for positron emission tomography (PET) and proton oncology.

More Information
Mark Foord
University of California, San Diego, Jacobs School of Engineering
Los Alamos National Laboratory
"Using Proton Beams to Create and Probe Plasmas," Science & Technology Review, December 2003

"Weapons Diagnostic Technology Revolutionizes Cancer Treatment," Science & Technology Review, October/November 2011

"Titan Leads the Way in Laser-Matter," Science Science & Technology Review, January/February 2007

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution
22.06.2017 | NASA/Goddard Space Flight Center

nachricht New femto-camera with quadrillion fractions of a second resolution
22.06.2017 | ITMO University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>