Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proton beam experiments open new areas of research

06.12.2011
By focusing proton beams using high-intensity lasers, a team of scientists have discovered a new way to heat material and create new states of matter in the laboratory.

Researchers from Lawrence Livermore National Laboratory; Jacobs School of Engineering at the University of California, San Diego; Los Alamos National Laboratory; Hemoltz-Zentrum Dresden-Rossendorf of Germany; Technische Universitat Darmstadt of Germany, and General Atomics of San Diego unveiled new findings about how proton beams can be used in myriad applications.

Using the Trident sub-picosecond laser at Los Alamos, the team generated and focused a proton beam using a cone-shaped target. The protons were found to have unexpectedly curved trajectories due to the large electric fields in the beam. A sheath electric field also channeled the proton beam through the cone tip, substantially improving the beam focus.

"These results agree well with our particle simulations and provide the physics basis for many future applications," said Mark Foord, one of the LLNL scientists on the team.

Other Livermore researchers include lead author Teresa Bartal (also a UCSD Ph.D student and Lawrence scholar), Claudio Bellei, Michael Key, Pravesh Patel, Drew Higginson and Harry McLean. The research appears in the Dec. 4 issue of the journal, Nature Physics.

Bartal said the experiments provide a new understanding of the physics involved in proton focusing, which affects how proton beams can be used in the future -- from heating material to creating new types of matter that couldn't be made by any other means, to medical applications and insights into planetary science.

"The ability to generate high-intensity well-focused proton beams can open the door to new regimes in high-energy density science," Bartal said.

One example includes focusing a proton beam on a solid density or compressed material creating millions of atmospheres of pressure, allowing the study of the properties of warm dense matter found in the interior of giant planets such as Jupiter.

The UCSD team was led by Farhat Beg of Jacobs School of Engineering and several of his students participated in this experiment.

"This work has given a new direction to the conventional thinking of proton beam focusing in short-pulse laser matter interaction," Beg said. "Surely it will impact heating of pre-compressed materials to temperatures observed at the core of the sun and any future applications in proton oncology using high-intensity lasers."

Laser-produced proton beams also are making an impact on medical applications such as isotope production for positron emission tomography (PET) and proton oncology.

More Information
Mark Foord
University of California, San Diego, Jacobs School of Engineering
Los Alamos National Laboratory
"Using Proton Beams to Create and Probe Plasmas," Science & Technology Review, December 2003

"Weapons Diagnostic Technology Revolutionizes Cancer Treatment," Science & Technology Review, October/November 2011

"Titan Leads the Way in Laser-Matter," Science Science & Technology Review, January/February 2007

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>