Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protection for humans on Mars

19.09.2012
GSI tests Moon and Mars regolith for future ground stations

For six weeks the rover „Curiosity” is now working on Mars. NASA also plans to send humans to Mars within the next 20 years. On the flight and during the stay on Moon or Mars the astronauts have to be protected against long exposure to cosmic radiation that might cause cancer.


Cosmic radiation is produced with the GSI linear accelerator.

On behalf of the European Space Agency ESA the GSI Helmholtzzentrum für Schwerionenforschung GmbH tests whether Moon and Mars regolith can be used to build shieldings for ground stations.

On Earth the atmosphere and the magnetic field weaken cosmic rays. But on Moon and Mars they pelt down unhamperdly. The cosmic radiation can harm astronauts and could cause cancer in the long run as a result of damage in DNA and cells.

Chiara La Tessa is manager of experiments in GSI biophysics. She explains why Moon or Mars ground stations would not be built from terrestrial high tech material: “In space travels every gram counts. Transporting building material through space would lead to a cost explosion. That is why ground stations would basically be built from Moon and Mars regolith – especially the shielding. We know from the analyses done by rovers what the local sand and stones consist of. With this information one can produce Moon and Mars regolith on Earth and we test it for its properties.” As cosmic rays are nothing else but fast ions that were accelerated by star explosions they can be simulated by an accelerator. The GSI facility is one of the few able to reproduce cosmic rays in an original way.

After the GSI team tested how well the stone slabs can protect against radiation in the American accelerator laboratory in Brookhaven, they now explore how many neutrons are produced in the materials when radiated.

If cosmic rays strike the stones with full speed they smash some atomic nuclei to pieces. The resulting free neutrons have a different effect on the human body than cosmic radiation. Depending on their speed they might even be more harmful.

At GSI the scientists now tested how strong the neutron effect is in Moon and Mars regolith and how far it passes through the material. „I cannot estimate how the material is going to react to the radiation yet“, says La Tessa. „Will many neutrons be produced? How many fast and how many slow ones? This we will know when we analyzed our experiment data.“

The tests funded by ESA were coordinated by Thales Alenia Space Italia. The prime contractor of ESA’s project also designed the test plan in cooperation with GSI, chose the materials and evaluats the results.

Dr. Ingo Peter | EurekAlert!
Further information:
http://www.gsi.de/en
http://www.gsi.de/en/start/news/detailseite/datum/2012/09/17/schutz-fuer-menschen-auf-dem-mars.htm

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>