Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project HOP-X: Organic Detectors for X-Rays

20.02.2013
Siemens is conducting research into organic detectors for X-rays.

This technology has the potential to substantially reduce production costs and also promises better image resolution than is possible with today's detectors. The innovation involves mixing specific substances into organic detector materials.



The substances involved absorb X-ray radiation, which is converted into visible light. Siemens' global Corporate Technology department is coordinating a three-year government-funded project known as HOP-X, in which the associated technology will be developed and demonstrated.

According to experts, initial potential applications include mammography devices and conventional X-ray machines.

Most of today's X-ray detectors consist of a scintillator coating that converts X-rays into visible light and a photodiode that registers the light in pixels. The savings potential offered by this amorphous silicon-based technology is largely exhausted, however. Today's units also have a dose-measurement chamber that monitors the set dose from a position between the patient and the detector.

This chamber must not be allowed to affect the X-ray image produced. Ionization measurement chambers have been used for this application up until now. However, such chambers are not sufficiently sensitive or shadow-free for the low doses of radiation that today's X-ray machines are capable of emitting.

Organic photo detectors can improve both aspects. These detectors are based on organic plastics and can be sprayed or printed onto a substrate at a low cost. This largely decouples production costs from the detector surface area, which is not the case with crystalline detectors. The organic diodes can also be used as dose-measurement chambers. They are more sensitive than ionization measurement chambers and can be structured more easily, which means the measurement unit can be adjusted to individual patient dimensions and dose regulation can be controlled more effectively.

The problem is that organic photodiodes mostly detect visible light. That's why Siemens researchers are developing special nanoparticles that can be mixed into the organic plastic solution as scintillators. Other project partners are examining an alternative that involves admixing semiconductor nanocrystals that directly absorb X-ray light, which is forwarded to the organic detector matrix in the form of electrons. Siemens is also responsible for the design of the new photodiodes and the creation of demonstration systems. The other Hop-X partners are Merck KgaA, the Leibniz Institute for New Materials and CAN-GmbH.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

Further reports about: HOP-X X-ray microscopy X-rays detectors organic farms visible light

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>