Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress in Nano-Optics

25.11.2013
To constrain individual light particles in a way as to control their movement on computer chips and nanostructures: This might lead to new developments in information technology. University of Würzburg physicists report on their progress in this field.

In recent years, computer engineers have no longer been able to increase the clock rate of conventional processors. This means that it is not possible to boost computer performance any further without recourse to certain tricks, such as the use of multiple processor cores.


Polarized light pulses are fed into a nano-antenna and guided along wires in specific charge wave patterns to be emitted elsewhere.

(Graphics: Thorsten Feichtner)

Therefore, researchers are looking for novel concepts. Optical circuits, which operate by means of light particles (photons), look promising in this context – not least because they seem to be suitable for data transmission between quantum computers. Such superfast computers are not yet available, but their implementation is a global research target.

Optical signal transmitted on the nanoscale

The study groups of Professor Bert Hecht and Professor Tobias Brixner at the University of Würzburg have now achieved an important step towards the development of optical circuits: The scientists were able to feed a light signal via an antenna into a waveguide and to have this signal emitted at the other end via another antenna.

What is special about this: The transmission of the optical signal was implemented in tiny structures that can be integrated in today's microelectronics: The antennas and the waveguide measure only a few hundred nanometers. Usually, photons cannot be controlled at such a small scale: "They are extremely unwilling to be confined in small places," Hecht explains. "Therefore, it is still very hard to combine photonic technologies with the silicon-based technology of conventional computer chips."

Success with oscillating plasmons

How did the researchers manage to control the photons? They worked with bound photons rather than free photons. These occur, under certain conditions, on the surface of well-conducting metals, such as gold. Incident light can generate there certain electron oscillations, also known as plasmons, which propagate along the metal to emit light elsewhere. Plasmons behave in a similar way to free photons, but they can be concentrated into very small places.

The Würzburg researchers have recently introduced the world's first simple plasmonic circuit in the prestigious journal "Physical Review Letters". It consists of an approximately 200-nanometer-long antenna, which efficiently captures free photons and converts them to plasmons. This light antenna is connected to a plasmon waveguide, consisting of two fine gold wires, which are about three micrometers long and run parallel to each other. There, the charge waves can spread in exactly two defined patterns – this phenomenon might be used in future to control the direction of movement of the plasmons, which is not possible in the case of electrons.

Strong damping in the circuit

As reported in the journal, the Würzburg researchers first show how the two charge wave patterns can be excited and how this excitation can be experimentally verified. However, the problem is that the plasmons are still strongly dampened on their way through the circuit. "This problem needs to be solved first before the principle can be translated into technological applications," says Hecht.

The physicists are aware that they have achieved only a small step towards the development of complete optical circuits. "Even so, our results will help to ensure that plasmonic waveguides will remain a highly exciting research topic in future," says Hecht.

"Multimode plasmon excitation and in-situ analysis in top-down fabricated nanocircuits", Peter Geisler, Gary Razinskas, Enno Krauss, Xiao-Fei Wu, Christian Rewitz, Philip Tuchscherer, Sebastian Goetz, Chen-Bin Huang, Tobias Brixner, and Bert Hecht, Phys. Rev. Lett. 111, 183901 (2013), DOI: 10.1103/PhysRevLett.111.183901

Contact person

Prof. Dr. Bert Hecht, Institute of Physics, University of Würzburg, T +49 (0)931 31-85863, hecht@physik.uni-wuerzburg.de

Prof. Dr. Tobias Brixner, Institute of Physical and Theoretical Chemistry, University of Würzburg, T +49 (0)931 31-86330, brixner@phys-chemie.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>