Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress in Nano-Optics

25.11.2013
To constrain individual light particles in a way as to control their movement on computer chips and nanostructures: This might lead to new developments in information technology. University of Würzburg physicists report on their progress in this field.

In recent years, computer engineers have no longer been able to increase the clock rate of conventional processors. This means that it is not possible to boost computer performance any further without recourse to certain tricks, such as the use of multiple processor cores.


Polarized light pulses are fed into a nano-antenna and guided along wires in specific charge wave patterns to be emitted elsewhere.

(Graphics: Thorsten Feichtner)

Therefore, researchers are looking for novel concepts. Optical circuits, which operate by means of light particles (photons), look promising in this context – not least because they seem to be suitable for data transmission between quantum computers. Such superfast computers are not yet available, but their implementation is a global research target.

Optical signal transmitted on the nanoscale

The study groups of Professor Bert Hecht and Professor Tobias Brixner at the University of Würzburg have now achieved an important step towards the development of optical circuits: The scientists were able to feed a light signal via an antenna into a waveguide and to have this signal emitted at the other end via another antenna.

What is special about this: The transmission of the optical signal was implemented in tiny structures that can be integrated in today's microelectronics: The antennas and the waveguide measure only a few hundred nanometers. Usually, photons cannot be controlled at such a small scale: "They are extremely unwilling to be confined in small places," Hecht explains. "Therefore, it is still very hard to combine photonic technologies with the silicon-based technology of conventional computer chips."

Success with oscillating plasmons

How did the researchers manage to control the photons? They worked with bound photons rather than free photons. These occur, under certain conditions, on the surface of well-conducting metals, such as gold. Incident light can generate there certain electron oscillations, also known as plasmons, which propagate along the metal to emit light elsewhere. Plasmons behave in a similar way to free photons, but they can be concentrated into very small places.

The Würzburg researchers have recently introduced the world's first simple plasmonic circuit in the prestigious journal "Physical Review Letters". It consists of an approximately 200-nanometer-long antenna, which efficiently captures free photons and converts them to plasmons. This light antenna is connected to a plasmon waveguide, consisting of two fine gold wires, which are about three micrometers long and run parallel to each other. There, the charge waves can spread in exactly two defined patterns – this phenomenon might be used in future to control the direction of movement of the plasmons, which is not possible in the case of electrons.

Strong damping in the circuit

As reported in the journal, the Würzburg researchers first show how the two charge wave patterns can be excited and how this excitation can be experimentally verified. However, the problem is that the plasmons are still strongly dampened on their way through the circuit. "This problem needs to be solved first before the principle can be translated into technological applications," says Hecht.

The physicists are aware that they have achieved only a small step towards the development of complete optical circuits. "Even so, our results will help to ensure that plasmonic waveguides will remain a highly exciting research topic in future," says Hecht.

"Multimode plasmon excitation and in-situ analysis in top-down fabricated nanocircuits", Peter Geisler, Gary Razinskas, Enno Krauss, Xiao-Fei Wu, Christian Rewitz, Philip Tuchscherer, Sebastian Goetz, Chen-Bin Huang, Tobias Brixner, and Bert Hecht, Phys. Rev. Lett. 111, 183901 (2013), DOI: 10.1103/PhysRevLett.111.183901

Contact person

Prof. Dr. Bert Hecht, Institute of Physics, University of Würzburg, T +49 (0)931 31-85863, hecht@physik.uni-wuerzburg.de

Prof. Dr. Tobias Brixner, Institute of Physical and Theoretical Chemistry, University of Würzburg, T +49 (0)931 31-86330, brixner@phys-chemie.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>