Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress in Nano-Optics

25.11.2013
To constrain individual light particles in a way as to control their movement on computer chips and nanostructures: This might lead to new developments in information technology. University of Würzburg physicists report on their progress in this field.

In recent years, computer engineers have no longer been able to increase the clock rate of conventional processors. This means that it is not possible to boost computer performance any further without recourse to certain tricks, such as the use of multiple processor cores.


Polarized light pulses are fed into a nano-antenna and guided along wires in specific charge wave patterns to be emitted elsewhere.

(Graphics: Thorsten Feichtner)

Therefore, researchers are looking for novel concepts. Optical circuits, which operate by means of light particles (photons), look promising in this context – not least because they seem to be suitable for data transmission between quantum computers. Such superfast computers are not yet available, but their implementation is a global research target.

Optical signal transmitted on the nanoscale

The study groups of Professor Bert Hecht and Professor Tobias Brixner at the University of Würzburg have now achieved an important step towards the development of optical circuits: The scientists were able to feed a light signal via an antenna into a waveguide and to have this signal emitted at the other end via another antenna.

What is special about this: The transmission of the optical signal was implemented in tiny structures that can be integrated in today's microelectronics: The antennas and the waveguide measure only a few hundred nanometers. Usually, photons cannot be controlled at such a small scale: "They are extremely unwilling to be confined in small places," Hecht explains. "Therefore, it is still very hard to combine photonic technologies with the silicon-based technology of conventional computer chips."

Success with oscillating plasmons

How did the researchers manage to control the photons? They worked with bound photons rather than free photons. These occur, under certain conditions, on the surface of well-conducting metals, such as gold. Incident light can generate there certain electron oscillations, also known as plasmons, which propagate along the metal to emit light elsewhere. Plasmons behave in a similar way to free photons, but they can be concentrated into very small places.

The Würzburg researchers have recently introduced the world's first simple plasmonic circuit in the prestigious journal "Physical Review Letters". It consists of an approximately 200-nanometer-long antenna, which efficiently captures free photons and converts them to plasmons. This light antenna is connected to a plasmon waveguide, consisting of two fine gold wires, which are about three micrometers long and run parallel to each other. There, the charge waves can spread in exactly two defined patterns – this phenomenon might be used in future to control the direction of movement of the plasmons, which is not possible in the case of electrons.

Strong damping in the circuit

As reported in the journal, the Würzburg researchers first show how the two charge wave patterns can be excited and how this excitation can be experimentally verified. However, the problem is that the plasmons are still strongly dampened on their way through the circuit. "This problem needs to be solved first before the principle can be translated into technological applications," says Hecht.

The physicists are aware that they have achieved only a small step towards the development of complete optical circuits. "Even so, our results will help to ensure that plasmonic waveguides will remain a highly exciting research topic in future," says Hecht.

"Multimode plasmon excitation and in-situ analysis in top-down fabricated nanocircuits", Peter Geisler, Gary Razinskas, Enno Krauss, Xiao-Fei Wu, Christian Rewitz, Philip Tuchscherer, Sebastian Goetz, Chen-Bin Huang, Tobias Brixner, and Bert Hecht, Phys. Rev. Lett. 111, 183901 (2013), DOI: 10.1103/PhysRevLett.111.183901

Contact person

Prof. Dr. Bert Hecht, Institute of Physics, University of Würzburg, T +49 (0)931 31-85863, hecht@physik.uni-wuerzburg.de

Prof. Dr. Tobias Brixner, Institute of Physical and Theoretical Chemistry, University of Würzburg, T +49 (0)931 31-86330, brixner@phys-chemie.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>