Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress in Nano-Optics

25.11.2013
To constrain individual light particles in a way as to control their movement on computer chips and nanostructures: This might lead to new developments in information technology. University of Würzburg physicists report on their progress in this field.

In recent years, computer engineers have no longer been able to increase the clock rate of conventional processors. This means that it is not possible to boost computer performance any further without recourse to certain tricks, such as the use of multiple processor cores.


Polarized light pulses are fed into a nano-antenna and guided along wires in specific charge wave patterns to be emitted elsewhere.

(Graphics: Thorsten Feichtner)

Therefore, researchers are looking for novel concepts. Optical circuits, which operate by means of light particles (photons), look promising in this context – not least because they seem to be suitable for data transmission between quantum computers. Such superfast computers are not yet available, but their implementation is a global research target.

Optical signal transmitted on the nanoscale

The study groups of Professor Bert Hecht and Professor Tobias Brixner at the University of Würzburg have now achieved an important step towards the development of optical circuits: The scientists were able to feed a light signal via an antenna into a waveguide and to have this signal emitted at the other end via another antenna.

What is special about this: The transmission of the optical signal was implemented in tiny structures that can be integrated in today's microelectronics: The antennas and the waveguide measure only a few hundred nanometers. Usually, photons cannot be controlled at such a small scale: "They are extremely unwilling to be confined in small places," Hecht explains. "Therefore, it is still very hard to combine photonic technologies with the silicon-based technology of conventional computer chips."

Success with oscillating plasmons

How did the researchers manage to control the photons? They worked with bound photons rather than free photons. These occur, under certain conditions, on the surface of well-conducting metals, such as gold. Incident light can generate there certain electron oscillations, also known as plasmons, which propagate along the metal to emit light elsewhere. Plasmons behave in a similar way to free photons, but they can be concentrated into very small places.

The Würzburg researchers have recently introduced the world's first simple plasmonic circuit in the prestigious journal "Physical Review Letters". It consists of an approximately 200-nanometer-long antenna, which efficiently captures free photons and converts them to plasmons. This light antenna is connected to a plasmon waveguide, consisting of two fine gold wires, which are about three micrometers long and run parallel to each other. There, the charge waves can spread in exactly two defined patterns – this phenomenon might be used in future to control the direction of movement of the plasmons, which is not possible in the case of electrons.

Strong damping in the circuit

As reported in the journal, the Würzburg researchers first show how the two charge wave patterns can be excited and how this excitation can be experimentally verified. However, the problem is that the plasmons are still strongly dampened on their way through the circuit. "This problem needs to be solved first before the principle can be translated into technological applications," says Hecht.

The physicists are aware that they have achieved only a small step towards the development of complete optical circuits. "Even so, our results will help to ensure that plasmonic waveguides will remain a highly exciting research topic in future," says Hecht.

"Multimode plasmon excitation and in-situ analysis in top-down fabricated nanocircuits", Peter Geisler, Gary Razinskas, Enno Krauss, Xiao-Fei Wu, Christian Rewitz, Philip Tuchscherer, Sebastian Goetz, Chen-Bin Huang, Tobias Brixner, and Bert Hecht, Phys. Rev. Lett. 111, 183901 (2013), DOI: 10.1103/PhysRevLett.111.183901

Contact person

Prof. Dr. Bert Hecht, Institute of Physics, University of Würzburg, T +49 (0)931 31-85863, hecht@physik.uni-wuerzburg.de

Prof. Dr. Tobias Brixner, Institute of Physical and Theoretical Chemistry, University of Würzburg, T +49 (0)931 31-86330, brixner@phys-chemie.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>