Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor Accomplishes Breakthrough Toward Quantum Computing

19.07.2011
A sort of Holy Grail for physicists and information scientists is the quantum computer.

Such a computer, operating on the highly complex principles of quantum mechanics, would be capable of performing specific calculations with capabilities far beyond even the most advanced modern supercomputers. It could be used for breaking computer security codes as well as for incredibly detailed, data-heavy simulations of quantum systems.

It could be used for applying precise principles of physics to understanding the minute details of the interactions of molecules in biological systems. It could also help physicists unravel some of the biggest mysteries of the workings of the universe by providing a way to possibly test quantum mechanics.

Such a computer exists in theory, but it does not exist in practicality – yet – as it would need to operate with circuitry at the scale of single atoms, which is still a daunting challenge, even to state-of-the-art experimental quantum science. To build a quantum computer, one needs to create and precisely control individual quantum memory units, called qubits, for information processing.

Qubits are similar to the regular memory "bits" in current digital computers, but far more fragile, as they are microscopic constituents of matter and extremely difficult to separate from their environment while at the same time increasing their number to a practical-size quantum register. In particular, qubits need to be created into sets with precise, nonlocal physical correlations, called entangled states.

Olivier Pfister, a professor of physics in the University of Virginia's College of Arts & Sciences, has just published findings in the journal Physical Review Letters demonstrating a breakthrough in the creation of massive numbers of entangled qubits, more precisely a multilevel variant thereof called Qmodes.

Entanglement dwells outside our day-to-day experience; imagine that two people, each tossing a coin on their own and keeping a record of the results, compared this data after a few coin tosses and found that they always had identical outcomes, even though each result, heads or tails, would still occur randomly from one toss to the next. Such correlations are now routinely observed between quantum systems in physics labs and form the operating core of a quantum computing processor.

Pfister and researchers in his lab used sophisticated lasers to engineer 15 groups of four entangled Qmodes each, for a total of 60 measurable Qmodes, the most ever created. They believe they may have created as many as 150 groups, or 600 Qmodes, but could measure only 60 with the techniques they used.

Each Qmode is a sharply defined color of the electromagnetic field. In lieu of a coin toss measurement, the Qmode measurement outcomes are the number of quantum particles of light (photons) present in the field. Hundreds to thousands of Qmodes would be needed to create a quantum computer, depending on the task.

"With this result, we hope to move from this multitude of small-size quantum processors to a single, massively entangled quantum processor, a prerequisite for any quantum computer," Pfister said.

Pfister's group used an exotic laser called an optical parametric oscillator, which emitted entangled quantum electromagnetic fields (the Qmodes) over a rainbow of equally spaced colors called an "optical frequency comb."

Ultrastable lasers emitting over an optical frequency comb have revolutionized the science of precision measurements, called metrology, and paved the way to multiple technological breakthroughs. The inventors of the optical frequency comb, physicists John Hall of the National Institute of Standards and Technology and Theodor Hänsch of the Max-Planck Institute for Quantum Optics, were awarded half of the 2005 Nobel Prize in Physics for their achievement. (The other half went to Roy Glauber, one of the founding fathers of quantum optics.)

With their experiments, Pfister's group completed a major step to confirm an earlier theoretical proof by Pfister and his collaborators that the quantum version of the optical frequency comb could be used to create a quantum computer.

"Some mathematical problems, such as factoring integers and solving the Schrödinger equation to model quantum physical systems, can be extremely hard to solve," Pfister said. "In some cases the difficulty is exponential, meaning that computation time doubles for every finite increase of the size of the integer, or of the system."

However, he said, this only holds for classical computing. Quantum computing was discovered to hold the revolutionary promise of exponentially speeding up such tasks, thereby making them easy computations.

"This would have tremendous societal implications, such as making current data encryption methods obsolete, and also major scientific implications, by dramatically opening up the possibilities of first-principle calculations to extremely complex systems such as biological molecules," Pfister said.

Quantum computing can be summarized by qubit processing; computing with single elementary systems, such as atoms or monochromatic light waves, as memory units. Because qubits are inherently quantum systems, they obey the laws of quantum physics, which are more subtle than those of classical physics.

Randomness plays a greater role in quantum evolution than in classical evolution, Pfister said. Randomness is not an obstacle to deterministic predictions and control of quantum systems, but it does limit the way information can be encoded and read from qubits.

"As quantum information became better understood, these limits were circumvented by the use of entanglement, deterministic quantum correlations between systems that behave randomly, individually," he said. "As far as we know, entanglement is actually the 'engine' of the exponential speed up in quantum computing."

Fariss Samarrai | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>