Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probing exoplanet chemistry without the need for space telescopes

05.02.2010
A group of astronomers, which includes researchers from the Max Planck Institute for Astronomy, has successfully tested a new method for probing the chemical composition of the atmospheres of planets that orbit distant stars.

The technique can be used by comparatively small telescopes on the ground, making exoplanet chemistry more widely accessible than ever before. First observations have yielded a fundamentally new result about exoplanet atmospheres. The results have been reported in the February 4, 2010 issue of the journal Nature.


Extraction of an exoplanet spectrum
Image: MPIA

Chemical studies of exoplanets - planets that orbit not the Sun, but distant stars - rely on spectroscopy, the systematic study of light emitted, reflected or absorbed by those planets at different colors, or wavelengths. Such studies used to be the domain of space observatories and of the world's largest ground-based telescopes (see the MPIA Science Release 2010-01-13). Now, a new data analysis technique successfully pioneered by a group of astronomers from the US, the UK and Germany has brought exoplanet spectroscopy to a much smaller (and more wide-spread) class of ground-based telescopes.

It took the researchers more than two years to develop their method so that it could be applied to spectroscopic observations of the exoplanet HD 189733b made in 2007 with a 3 metre telescope. Using the new method, the identification of specific molecules such as methane and carbon dioxide became possible. The planet, a gas giant similar to Jupiter, orbits the star HD 189733 A in the constellation Vulpecula (or "Fox"), at a distance of 63 light-years from Earth. The spectrum included an interesting wavelength region that is not observable with current space telescopes.

As seen from Earth, the planet HD 189733b periodically moves behind its host star in a planetary eclipse. The planet's spectrum is extracted by comparing the system's light before and after the star hides the planet from sight. Unfortunately, the same atmospheric turbulence which is responsible for the twinkling of stars in the night sky introduces disturbances that are very difficult to account for. Co-author Jeroen Bouwman of the Max Planck Institute for Astronomy explains: "Using newly developed calibration techniques, we can distinguish the variations in time due to the planetary eclipse from those that are due to atmospheric disturbances, or to instrumental artefacts. In this way, we can tell which part of the light is from the exoplanet, and which from the star." Previously, this kind of measurement had only been possible with space telescopes, where observing time is rationed out very strictly. Now, exoplanet spectroscopy becomes accessible to dozens of ground-based telescopes with mirror sizes down to a few metres, and without the need for specialized spectrographic equipment.

The study's lead author, Mark Swain from NASA's Jet Propulsion Laboratory (a former guest scientists of the Max Planck Institute for Astronomy) explains further: "The fact that we have used a relatively small, ground-based telescope is exciting because it implies that the largest telescopes on the ground, using this technique, may be able to characterize terrestrial exoplanet targets." The chemical study of terrestrial, or Earth-like, planets, will be a key step in the search for exoplanets with habitable conditions, or even life on other planets - a crucial, if long-term, aim of modern astronomy. Co-author and MPIA director Thomas Henning adds: "This is exciting news for new instruments such as the LUCIFER spectrograph being installed at the Large Binocular Telescope in Arizona."

The first measurements using the new techniques provide key data to those modelling exoplanet atmospheres. Previous models were simplified in that they admitted only comparatively slow changes in atmospheric conditions. Researchers knew this to be unrealistic, but did not have sufficient data to distinguish between those overly simplified models and more realistic ones. The new spectroscopic data allows for just such differentiation, allowing astronomers to develop new, more realistic models of exoplanet atmospheres.

Contact

Dr. Jeroen Bouwman (Coauthor)
Max Planck Institute for Astronomy, Heidelberg, Germany
Phone: (0|+49) 6221 - 528 404
E-mail: bouwman@mpia.de
Dr. Markus Pössel (PR)
Max Planck Institute for Astronomy, Heidelberg, Germany
Phone: (0|+49) 6221 - 528 261
E-mail: poessel@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>