Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Primitive asteroids in the main asteroid belt may have formed far from the sun

17.07.2009
Many of the objects found today in the asteroid belt located between the orbits of Mars and Jupiter may have formed in the outermost reaches of the solar system, according to an international team of astronomers led by scientists from Southwest Research Institute (SwRI).

The team used numerical simulations to show that some comet-like objects residing in a disk outside the original orbit of the planets were scattered across the solar system and into the outer asteroid belt during a violent phase of planetary evolution.

Usually, the solar system is considered a place of relative permanence, with changes occurring gradually over hundreds of millions to billions of years. New models of planet formation indicate, however, that at specific times, the architecture of the solar system experienced dramatic upheaval.

In particular, it now seems probable that approximately 3.9 billion years ago, the giant planets of our solar system -- Jupiter, Saturn, Uranus and Neptune -- rearranged themselves in a tumultuous spasm. "This last major event of planet formation appears to have affected nearly every nook and cranny of the solar system," says lead author Dr. Hal Levison of SwRI.

Key evidence for this event was first identified in the samples returned from the Moon by the Apollo astronauts. They tell us about an ancient cataclysmic bombardment where large asteroids and comets rained down on the Moon.

Scientists now recognize that this event was not limited solely to the Moon; it also affected the Earth and many other solar system bodies. "The existence of life on Earth, as well as the conditions that made our world habitable for us, are strongly linked to what happened at this distant time," states Dr. David Nesvorny of SwRI.

The same dynamical conditions that devastated the planets also led to the capture of some would-be impactors in the asteroid belt. "In the classic movie 'Casablanca,' everybody comes to Rick's. Apparently throughout the solar system, the cool hangout for small objects is the asteroid belt," says Dr. William Bottke of SwRI.

Once in the asteroid belt, the embedded comet-like objects began to beat up both themselves and the asteroids. "Our model shows that comets are relatively easy to break up when hit by something, at least when compared to typical asteroids. It is unavoidable that some of the debris went on to land on asteroids, the Moon and the Earth. In fact, some of the leftovers may still be arriving today," says Dr. Alessandro Morbidelli of the Observatoire de la Cote d'Azur in Nice, France.

The team believes the surprising similarities between some micrometeorites landing on Earth and comet samples returned by NASA's Stardust mission are no accident. "There has been lots of debate about the nature of micrometeorites reaching the Earth," says Dr. Matthieu Gounelle of the Museum National d'Histoire Naturelle in Paris. "Some believe they are asteroidal, while others argue they are cometary. Our work suggests that in a sense, both camps may be right."

"Some of the meteorites that once resided in the asteroid belt show signs they were hit by 3.5 to 3.9 billion years ago. Our model allows us to make the case they were hit by captured comets or perhaps their fragments," adds Dr. Kleomenis Tsiganis of Aristotle University of Thessaloniki, Greece. "If so, they are telling us the same intriguing story as the lunar samples, namely that the solar system apparently went berserk and reconfigured itself about 4 billion years ago."

Overall, the main asteroid belt contains a surprising diversity of objects ranging from primitive ice/rock mixtures to igneous rocks. The standard model used to explain this assumes that most asteroids formed in place from a primordial disk that experienced radical chemical changes within this zone. This model shows, however, that the observed diversity of the asteroid belt is not a direct reflection of the intrinsic compositional variation of the proto-planetary disk. These results fundamentally change our view of the asteroid belt.

Additional tests of this model will come from studies of meteorites, the asteroid belt, planet formation and the Moon. "The Moon and the asteroid belt may be the best and most accessible places in the solar system to understand this critical part of solar system history," says Levison. "We believe key evidence from these cold airless bodies may help us unlock the biggest 'cold case' of all time."

The article, "The Contamination of the Asteroid Belt by Primordial Trans-Neptunian Objects," by Hal Levison, William Bottke, Alessandro Morbidelli, Matthieu Gounelle, David Nesvorny and Kleomenis Tsiganis, was published in the July 16 issue of Nature.

Funding for this research was provided by NASA's Outer Planets Research and Origins of Solar Systems programs. Additional support was provided by NASA's Lunar Science Institute.

Maria Martinez | EurekAlert!
Further information:
http://www.swri.org

More articles from Physics and Astronomy:

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>