Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precision time: A matter of atoms, clocks, and statistics

02.02.2012
The ability to accurately measure a second in time is at the heart of many essential technologies; the most recognizable may be the Global Positioning System (GPS).

In a paper accepted for publication in the AIP's journal Review of Scientific Instruments, a researcher at the National Institutes of Standards and Technology (NIST) and the University of Colorado at Boulder discusses how achieving a stable and coordinated global measure of time requires more than just the world's most accurate timepieces; it also requires approximately 400 atomic clocks working as an ensemble.

According to the researcher, however, calculating the average time of an ensemble of clocks is difficult, and complicated statistics are needed to achieve greater accuracy and precision. These statistical calculations are essential to help counter one of the most important challenges in keeping and agreeing on time: distributing data without degrading the performance of the source clocks.

All atomic clocks operate in basically the same way, by comparing an electrical oscillator (a device engineered to keep time) with the transition frequency of an atom (one of nature's intrinsic time keepers). This atomic transition is a "flip" in the spin in the outermost electron of an atom – an event that is predictable with an accuracy of a few parts per ten quadrillion. Comparing the natural and engineered signals produces the incredibly stable "tick" of an atomic clock. Several algorithms are then used to estimate the time of the reference clock with respect to the ensemble of clocks.

These calculations weed out as much error as possible and establish a reliable reference time. The researcher notes that there are strengths and weaknesses in each of these statistical steps, but these weaknesses can be mitigated to some extent by also including retrospective data.

So in essence, determining the current time relies on understanding how accurately researchers were able to calculate time in the past. Even the next generation of atomic clocks and frequency standards are unlikely to eliminate the need for these timescale algorithms. However, keeping time and frequency signals and standards the same in all countries is essential and greatly simplifies international cooperation in areas such as navigation, telecommunication, and electric power distribution.

Article: "The Statistical Modeling of Atomic Clocks and the Design of Time Scales" is accepted for publication in the journal Review of Scientific Instruments.

Author: Judah Levine (1).

(1) Time and Frequency Division, National Institutes of Standards and Technology and the University of Colorado at Boulder

Charles Blue | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>