Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PPPL scientists take key step toward solving a major astrophysical mystery

10.09.2014

Magnetic reconnection can trigger geomagnetic storms that disrupt cell phone service, damage satellites and black out power grids. But how reconnection, in which the magnetic field lines in plasma snap apart and violently reconnect, transforms magnetic energy into explosive particle energy remains a major unsolved problem in plasma astrophysics. Magnetic field lines represent the direction, and indicate the shape, of magnetic fields.

Now scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have taken a key step toward a solution, as described in a paper published this week in the journal Nature Communications. In research conducted on the Magnetic Reconnection Experiment (MRX) at PPPL, the scientists not only identified how the mysterious transformation takes place, but measured experimentally the amount of magnetic energy that turns into particle energy. This work was supported by the DOE Office of Science.

The investigation showed that reconnection converts about 50 percent of the magnetic energy, with one-third of the conversion heating the electrons and two-thirds accelerating the ions — or atomic nuclei — in the plasma. In large bodies like the sun, such converted energy can equal the power of millions of tons of TNT.

"This is a major milestone for our research," said Masaaki Yamada, the principal investigator for the MRX and first author of the Nature Communications paper. "We can now see the entire picture of how much of the energy goes to the electrons and how much to the ions in a prototypical reconnection layer."

... more about:
»DOE »Laboratory »MMS »MRX »PPPL »Physics »Plasma »Science »charged »electrons »ions »nuclei

The findings also suggested the process by which the energy conversion occurs. Reconnection first propels and energizes the electrons, according to the researchers, and this creates an electrically charged field that "becomes the primary energy source for the ions," said Jongsoo Yoo, a postdoctoral fellow at PPPL and coauthor of the paper. Also contributing to the paper were physicists Hantao Ji and Russell Kulsrud, and doctoral candidates Jonathan Jara-Almonte and Clayton Myers.

If confirmed by data from space explorations, the PPPL results could help resolve decades-long questions and create practical benefits. These could include a better understanding of geomagnetic storms that could lead to advanced warning of the disturbances and an improved ability to cope with them. Researchers could shut down sensitive instruments on communications satellites, for example, to protect the instruments from harm.

The PPPL team will eagerly watch a four-satellite mission that NASA plans to launch next year to study reconnection in the magnetosphere — the magnetic field that surrounds the Earth. The team plans to collaborate with the venture, called the Magnetospheric Multiscale (MMS) Mission, by providing MRX data to it. The MMS probes could help to confirm the Laboratory's findings.

###

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Fusion takes place when atomic nuclei fuse and release a burst of energy. This compares with the fission reactions in today's nuclear power plants, which operate by splitting atoms apart.

Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Contact: John Greenwald
jgreenwa@pppl.gov
Office: 609-243-2672
Mobile: 609-610-6480

John Greenwald | Eurek Alert!

Further reports about: DOE Laboratory MMS MRX PPPL Physics Plasma Science charged electrons ions nuclei

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>