Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PPPL researchers successfully test device that analyzes components within a vacuum

12.09.2016

Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have successfully tested a new device that will lead to a better understanding of the interactions between ultrahot plasma contained within fusion facilities and the materials inside those facilities.


This is the MAPP device, in black, situated underneath NSTX-U.

Credit: Felipe Bedoya

The measurement tool, known as the Materials Analysis Particle Probe (MAPP), was built by a consortium that includes Princeton University and the University of Illinois at Urbana-Champaign (U. of I.).

The device lets scientists test the chemical make-up of the surface of materials exposed to plasma, while keeping the materials in a vacuum. The research was published in the July issue of Review of Scientific Instruments, and was funded by the DOE Office of Science (Fusion Energy Sciences) and the Francisco José de Caldas Fellowship Program.

MAPP's leading developer is Professor Jean Paul Allain, now at the U. of I., who began the project in 2011. Collaborators at PPPL include physicists Robert Kaita, Charles Skinner, and Bruce Koel.

"Using MAPP, we are seeing for the first time the evolution of the materials when they interact with the plasma, and how the conditioning and other procedures modify the chemistry of the materials," said lead author Felipe Bedoya, a graduate student in the Department of Nuclear, Plasma and Radiological Engineering at the U. of I. Bedoya spent a semester at PPPL investigating the relationship between the conditioning of plasma-facing components (PFCs) and the behavior of plasma in the National Spherical Torus Experiment-Upgrade (NSTX-U), the nation's newest fusion device and the flagship fusion facility at PPPL.

The interactions between the plasma and the inner walls of the tokamak are crucially important to the production of fusion energy because they profoundly affect the condition of the plasma. If hot hydrogen ions in the plasma touch the walls, the ions are absorbed and cool down. And if the cool hydrogen re-enters the plasma, it lowers the temperature of the plasma's edge and fusion reactions within the plasma occur less often.

In addition, the interior of a tokamak can be eroded by the bombardment of the plasma ions. The amount of plasma-wall interactions can also determine how long a tokamak's plasma-facing components can last before being replaced. Understanding the behavior of materials when exposed to plasma is therefore critical for the design of future fusion machines.

Before MAPP, scientists had to wait for the completion of a long series of fusion experiments before analyzing materials within a tokamak. That kept researchers from confidently correlating fusion experiments their effect on the materials. And because samples of the material had to be exposed to air when they were brought to a laboratory, scientists couldn't be sure that the chemistry of the samples had not changed.

MAPP enables material samples to be measured under vacuum conditions after each experiment. "People used to wait until the end of an experiment campaign to take out a tile, bring it to a lab, and examine it," said Bedoya. "What we're doing right now is bringing the lab to the machine."

MAPP has been in operation on the NSTX-U for the last 10 months. While using MAPP, researchers expose a set of material samples conditioned with boron to the NSTX-U plasma and retract the samples into a vacuum chamber without any exposure to air. They then use a technique called "X-ray photoelectron spectroscopy" to strike the samples with X-rays and study the electrons the process emits. The emissions provide information about the surface chemistry of the samples, revealing how the boron coating changes when exposed to the plasma.

In the paper, the authors report that they successfully tested a method to analyze data produced by MAPP. They used a sophisticated computer program called CasaXPS to obtain the proper interpretation. Results appear to have matched both controlled laboratory experiments and computer simulations, suggesting that the technique's analysis is correct.

"Many people have seen a strong correlation between the conditioning of the plasma-facing components and the performance of the plasma," Bedoya said. "So if you can diagnose how the conditioning changes, you can do it better and better each time and ultimately figure out the optimum conditioning."

Scientists believe that MAPP will become an integral part of plasma physics research. "MAPP is a step towards uncovering the mysteries of what's happening at tokamak walls, shot by shot, as the wall changes the plasma's conditions," said Charles Skinner, PPPL physicist and co-author of the paper. "Using this device could help us see exactly what's going on at the wall, and how that correlates or even explains what's going on with the plasma."

###

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Raphael Rosen
rrosen@pppl.gov

 @PPPLab

http://www.pppl.gov 

Raphael Rosen | EurekAlert!

Further reports about: PPPL Plasma X-ray photoelectron spectroscopy fusion energy ions vacuum

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>