Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powering lasers through heat

13.11.2012
In micro electronics heat often causes problems and engineers have to put a lot of technical effort into cooling, for example micro chips, to dissipate heat that is generated during operation.
Innsbruck physicists have now suggested a concept for a laser that could be powered by heat. This idea may open a completely new way for cooling microchips.

Since its invention 50 years ago, laser light has conquered our daily life. Lasers of varying wave lengths and power are used in many parts of our life, from consumer electronics to telecommunication and medicine. However, not all wave lengths have been equally well researched. For the far infrared and terahertz regime quantum cascade lasers are the most important source of coherent radiation. Light amplification in such a cascade laser is achieved through a repeated pattern of specifically designed semi-conductor layers of diverse doping through which electric current is running.

Schematic picture of a quantum cascade laser. The layers of different semiconductor material constitute the bandstructure shown in the inset.

Grafik: Christoph Deutsch

“The electrons are transferred through this structure in a specific series of tunneling processes and quantum leaps, emitting coherent light particles,” explains Helmut Ritsch, Institute for Theoretical Physics, University of Innsbruck, the functioning of such a laser. “Between these layers the electrons collide with other particles, which heats the laser.” Thus, quantum cascade lasers only work as long as they are strongly cooled. When too much heat is produced, the laser light extinguishes.

Revolutionary concept

When looking for ways to reduce heat in lasers, PhD student Kathrin Sandner and Helmut Ritsch came up with a revolutionary idea: The theoretical physicists suggest using heat to power the laser. In their work, recently published in Physical Review Letters, the two physicists propose the theory that the heating effect in quantum cascade lasers could not only be avoided but, in fact, reversed through a cleverly-devised modification of the thickness of the semiconductor layers. “A crucial part is to spatially separate the cold and warm areas in the laser,” explains Kathrin Sandner.
“In such a temperature gradient driven laser, electrons are thermally excited in the warm area and then tunnel into the cooler area where photons are emitted.” This produces a circuit where light particles are emitted and heat is absorbed from the system simultaneously. “Between the consecutive emissions of light particles a phonon is absorbed and the laser is cooled. When we develop this idea further, we see that the presence of phonons may be sufficient to provide the energy for laser amplification,” says Kathrin Sandner. Such a laser could be powered without using electric current.

“Of course, it is quite a challenge to implement this concept in an experiment,” says Helmut Ritsch. “But if we are successful, it will be a real technological innovation.” The physical principle behind the idea could already be applied to existing quantum cascade lasers, where it could provide internal cooling. This simplified concept seems to be technically feasible and is already being examined by experimental physicists.
Elegant idea with technical potential

“Apart from the conceptual elegance of this idea, a completely new way may open up of using heat in microchips in a beneficial way instead of having to dissipate it by cooling,” says an excited Helmut Ritsch about the work of his student. Kathrin Sandner majored in physics in Freiburg, Germany, and has worked as a researcher at the Institute for Theoretical Physics, University of Innsbruck, since 2009. “If you want to do research in quantum optics, Innsbruck is the place to go,” says Sandner about her motivation to work in Innsbruck. Kathrin Sandner was supported by the DOC-fFORTE doctoral program of the Austrian Academy of Sciences and by a PhD grant from the University of Innsbruck. She is about to finish her PhD program.

Publication: Temperature Gradient Driven Lasing and Stimulated Cooling. K. Sandner, H. Ritsch. Phys. Rev. Lett. 109, 193601 (2012) DOI:10.1103/PhysRevLett.109.193601 http://dx.doi.org/10.1103/PhysRevLett.109.193601

Rückfragehinweis

Prof. Helmut Ritsch
Institute of Theoretical Physics
University of Innsbruck
Telefon: +43 512 507-52213
E-Mail: helmut.ritsch@uibk.ac.at
Dipl.-Phys. Kathrin Sandner
Institute of Theoretical Physics
University of Innsbruck
Telefon: +43 512 507-52224
E-Mail: kathrin.sandner@uibk.ac.at
Christian Flatz
Public Relations
University of Innsbruck
Telefon: +43 512 507-32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.uibk.ac.at

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
17.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>