Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful magnetic fields challenge black holes' pull

05.06.2014

Black holes are thought to dominate their surroundings by their extremely powerful gravitational pull.

However, other forces which are usually considered to be weaker are also at work near these objects. These include forces exerted by the pressure of the in-falling hot gas and magnetic forces.


A computer simulation of gas (in yellow) falling into a black hole (too small to be seen). Twin jets are also shown with magnetic field lines. Credit: Alexander Tchekhovskoy (LBNL)

In a surprising twist, a team of astronomers at the Max Planck Institute for Radio Astronomy (MPIfR) and Lawrence Berkeley National Laboratory (LBNL) has found that in fact magnetic forces can be as strong as gravity near supermassive black holes. These findings are published in this week's issue of Nature.

Some black holes that are voraciously consuming interstellar gas also expel some of it in twin narrow outflows, or jets. This study focused on those supermassive black holes at the centers of galaxies that have observed radio-emitting jets.

"We realized that the radio emission from a black hole's jets can be used to measure the magnetic field strength near the black hole itself", says the study's lead-author, Mohammad Zamaninasab (formerly at the MPIfR and supported by a grant from Deutsche Forschungsgemeinschaft, DFG). "Our real aha experience came when we compared our magnetic force measurements to the force of gravity near black holes, and found them to be comparable”, he continues.

On a purely theoretical level, the possibility that magnetic fields may be as strong as gravity near black holes has been studied by state-of-the-art computer simulations. “When the in-falling gas carries enough magnetic field in our simulations, then the magnetic field near the black hole gets stronger until it balances gravity”, explains Alexander Tchekhovskoy (LBNL), a co-author of the study. “This fundamentally changes the behavior of the gas near the black hole.”

Surprisingly, the magnetic field strength around these exotic objects is comparable to the magnetic field produced in something more familiar: a magnetic resonance imaging (MRI) machine that you can find in your local hospital. Both supermassive black holes and MRI machines produce magnetic fields that are roughly 10 000 times stronger than the Earth's surface magnetic field, which is what guides an ordinary compass.

The measurements of the magnetic field strength near the black hole were based on mapping what fraction of the radio emission is absorbed at different locations near the base of the jet. “Such observations existed for an order of hundred sources from earlier work of several international re-search teams using the Very Long Baseline Array, a network of radio telescopes spread across the United States”, says co-author Tuomas Savolainen from MPIfR. “A large fraction of these measurements had just relatively recently become available thanks to a large observing program called MOJAVE, which monitors several hundred jets launched by supermassive black holes.”

The strength of the magnetic field near the black hole horizon also controls how powerful its jets are and, therefore, how luminous they appear at radio wavelengths according to current theories that treat black holes as a sort of spinning magnet. Thus, it is possible that the bright radio jets emanate from those black hole systems that have magnetic fields as strong as gravity.

These results may lead to changes in how to interpret black hole observations. “If our ideas hold up to further scrutiny, then astronomers' expectations for how to measure black hole properties would need to be changed.” concludes Eric Clausen-Brown, also from MPIfR. “Our study also changes how powerful we expect black hole jets can be, and since these jets can impact their own galaxies and beyond, we may need to rethink how much of an environmental impact black holes can have.”

Original Paper:

Dynamically-important magnetic fields near accreting supermassive black holes, by M. Zamaninasab, E. Clausen-Brown, T. Savolainen, A. Tchekhovskoy, published in: 2014, Nature. DOI: 10.1038/nature13399
http://www.nature.com/nature/journal/v510/n7503/full/nature13399.html
(after the embargo expires).

Contact:

Dr. Mohammad Zamaninasab
Fon: +49(0)176 64972814
E-mail: m.zamaninasab@gmail.com

Dr. Eric Clausen-Brown
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-473
E-mail: clausenbrown@mpifr-bonn.mpg.de

Dr. Tuomas Savolainen
Max-Planck-Institut für Radioastronomie
Fon: +49(0)228-525-473
E-Mail: tsavolainen@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2014/6

Norbert Junkes | Max-Planck-Institut

Further reports about: LBNL MPIfR MRI Max-Planck-Institut Radioastronomie Savolainen galaxies gravity measurements

More articles from Physics and Astronomy:

nachricht A quantum walk of photons
24.05.2017 | Julius-Maximilians-Universität Würzburg

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

Carcinogenic soot particles from GDI engines

24.05.2017 | Life Sciences

A quantum walk of photons

24.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>