Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful new way to control magnetism

24.08.2010
Colossal magnetoelectricity points the way to ultra-dense data storage

A team of scientists at Rutgers University has found a material in which an electric field can control the overall magnetic properties of the material. If the magnetoelectric effect discovered by the Rutgers group can be extended to higher temperatures, it could be useful for manipulating small-scale magnetic bits in ultra high-density data storage. The research appears in the current issue of Physical Review Letters.

The researchers found the effect by studying the magnetic properties of a manganite mineral consisting of magnesium, oxygen, europium and yttrium. At low temperatures (7 to 20 degrees above absolute zero) and in high magnetic fields, a slight change in applied electric fields causes a large change in the mineral's magnetic properties. The magnetoelectric effect could lead to advances comparable to the cheap, high capacity hard drives that were made possible with the discovery of giant magnetoresistance. Unlike devices relying on giant magnetoresistance, which require magnetic fields to manipulate electrical resistance, magnetoelectric decives could be controlled with smaller and simpler electrical read and write heads. Replacing magnetic components with electrical ones could potentially lead to much denser storage than the terabyte discs now available. Related materials that demonstrate magnetoelectricity at much higher temperatures would likely be required before the technology reaches commercial computer components, but discovery of the effect is an encouraging advance.

A Viewpoint by Dimitri Argyriou (Helmholtz Zentrum Berlin für Materialen und Energy) provides an overview of the latest step on the path to colossal magnetoelectricity in this week's edition of Physics (physics.aps.org).

About Physics:

Physics (http://physics.aps.org) is a publication of the American Physical Society consisting of expert written commentaries and highlights of papers appearing in the journals of the American Physical Society.

James Riordon | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>