Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful 3-D X-rays for kids in braces should be the exception, not the rule

31.01.2011
Some orthodontists may be exposing young patients to unnecessary radiation when they order 3-D X-ray imaging for simple orthodontic cases before considering traditional 2-D imaging, suggests a paper published by University of Michigan faculty.

There is ongoing debate in the orthodontic community over if and when to use cone beam computed tomography (CBCT) for orthodontic diagnosis and treatment planning, said Dr. Sunil Kapila, lead author of the paper and chair of the Department of Orthodontics and Pediatric Dentistry at the U-M School of Dentistry.

A very small number of orthodontists utilize the 3-D imaging on a routine basis when developing a treatment plan, and this raises concerns of unnecessary radiation exposure. In contrast, the evidence summarized in Kapila's paper suggests that 2-D imaging would suffice in most routine orthodontic cases. One of the tradeoffs for the superb 3-D images is higher radiation exposure, Kapila said.

The amount of radiation produced by 3D CBCT imaging varies substantially depending on the machine used and the field of view exposed, and some clinicians may not realize how much higher that radiation is compared to conventional radiographs. One CBCT image can emit 87 to 200 microsieverts or more compared to 4 to 40 microsieverts for an entire series of 2-D X-rays required for orthodontic diagnosis, Kapila said. Considering that the average US population is exposed to approximately 8 microsieverts of background radiation a day, 200 microsieverts equates to about 25 days worth of cosmic and terrestrial radiation.

"Most of the patients who need orthodontic treatment are young adults and pediatric patients,"said Dr. Erika Benavides, clinical assistant professor in U-M's Department of Periodontics and Oral Medicine. Benavides is the board certified oral and maxillofacial radiologist who reads the CBCT scans taken at the U-M School of Dentistry. "Keeping in mind that the radiation received has cumulative effects, adding unnecessary radiation exposure to the patient may result in a higher biological risks, particularly in the more susceptible young children. This is why selecting the patients that would benefit the most from this additional exposure needs to be done on a case-by-case basis."

Both Kapila and Benavides said when used judiciously, CBCT is an invaluable tool with a definite place in orthodontic treatment planning. The paper published by Kapila and his colleagues advocates "a balanced approach to utilizing CBCT in our patients," Kapila said.

To that end, Kapila and colleagues reviewed the existing data on CBCT and found that this type of imaging is typically recommended in cases that include those with impacted teeth, temporomandibular joint disease, craniofacial abnormalities, and jaw deformities. While other patients could also benefit from 3D imaging, the decision to scan these patients should be made on a case-by-case basis after a clinical exam and evaluation of the specific patient needs, particularly when 2-D imaging has shown that addition 3-D information would result in a demonstrable benefit that would likely alter the treatment plan.

"There is nothing published on current usage patterns," Kapila said. "Most of the information is anecdotal. Some clinicians and orthodontists are using this technology routinely, but I believe that most of those that use 3-D imaging use it fairly judiciously," Kapila said.

The patients who are scanned at U-M Dental School are referred after clinical evaluation by dental specialists and the area to be scanned is carefully limited, Benavides said.

The paper, "The current status of cone beam computer tomography imaging in orthodontics," was recently published in the journal of Dentomaxillofacial Radiology. Co-authors are R.S. Conley, associate professor at U-M School of Dentistry, and W.E. Harrell, both board certified orthodontists.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht A quantum walk of photons
24.05.2017 | Julius-Maximilians-Universität Würzburg

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>