Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful 3-D X-rays for kids in braces should be the exception, not the rule

31.01.2011
Some orthodontists may be exposing young patients to unnecessary radiation when they order 3-D X-ray imaging for simple orthodontic cases before considering traditional 2-D imaging, suggests a paper published by University of Michigan faculty.

There is ongoing debate in the orthodontic community over if and when to use cone beam computed tomography (CBCT) for orthodontic diagnosis and treatment planning, said Dr. Sunil Kapila, lead author of the paper and chair of the Department of Orthodontics and Pediatric Dentistry at the U-M School of Dentistry.

A very small number of orthodontists utilize the 3-D imaging on a routine basis when developing a treatment plan, and this raises concerns of unnecessary radiation exposure. In contrast, the evidence summarized in Kapila's paper suggests that 2-D imaging would suffice in most routine orthodontic cases. One of the tradeoffs for the superb 3-D images is higher radiation exposure, Kapila said.

The amount of radiation produced by 3D CBCT imaging varies substantially depending on the machine used and the field of view exposed, and some clinicians may not realize how much higher that radiation is compared to conventional radiographs. One CBCT image can emit 87 to 200 microsieverts or more compared to 4 to 40 microsieverts for an entire series of 2-D X-rays required for orthodontic diagnosis, Kapila said. Considering that the average US population is exposed to approximately 8 microsieverts of background radiation a day, 200 microsieverts equates to about 25 days worth of cosmic and terrestrial radiation.

"Most of the patients who need orthodontic treatment are young adults and pediatric patients,"said Dr. Erika Benavides, clinical assistant professor in U-M's Department of Periodontics and Oral Medicine. Benavides is the board certified oral and maxillofacial radiologist who reads the CBCT scans taken at the U-M School of Dentistry. "Keeping in mind that the radiation received has cumulative effects, adding unnecessary radiation exposure to the patient may result in a higher biological risks, particularly in the more susceptible young children. This is why selecting the patients that would benefit the most from this additional exposure needs to be done on a case-by-case basis."

Both Kapila and Benavides said when used judiciously, CBCT is an invaluable tool with a definite place in orthodontic treatment planning. The paper published by Kapila and his colleagues advocates "a balanced approach to utilizing CBCT in our patients," Kapila said.

To that end, Kapila and colleagues reviewed the existing data on CBCT and found that this type of imaging is typically recommended in cases that include those with impacted teeth, temporomandibular joint disease, craniofacial abnormalities, and jaw deformities. While other patients could also benefit from 3D imaging, the decision to scan these patients should be made on a case-by-case basis after a clinical exam and evaluation of the specific patient needs, particularly when 2-D imaging has shown that addition 3-D information would result in a demonstrable benefit that would likely alter the treatment plan.

"There is nothing published on current usage patterns," Kapila said. "Most of the information is anecdotal. Some clinicians and orthodontists are using this technology routinely, but I believe that most of those that use 3-D imaging use it fairly judiciously," Kapila said.

The patients who are scanned at U-M Dental School are referred after clinical evaluation by dental specialists and the area to be scanned is carefully limited, Benavides said.

The paper, "The current status of cone beam computer tomography imaging in orthodontics," was recently published in the journal of Dentomaxillofacial Radiology. Co-authors are R.S. Conley, associate professor at U-M School of Dentistry, and W.E. Harrell, both board certified orthodontists.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>