Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential leap forward in electron microscopy

08.10.2009
MIT electrical engineers have proposed a new scheme that can overcome a critical limitation of high-resolution electron microscopes: they cannot be used to image living cells because the electrons destroy the samples. The researchers suggest using a quantum mechanical measurement technique that allows electrons to sense objects remotely without ever hitting the imaged objects, thus avoiding damage.

Why it matters: A non-invasive electron microscope could shed light on fundamental questions about life and matter, allowing researchers to observe molecules inside a living cell without disturbing them. If successful, such microscopes would surmount what Nobel laureate Dennis Gabor concluded in 1956 was the fundamental limitation of electron microscopy: "The destruction of the object by the exploring agent."

How it works: Traditional electron microscopes use a particle beam of electrons, instead of light, to image specimens. These beams offer extremely high resolution, up to 0.2 to 10 nanometers — 10 to 1,000 times greater than a traditional light microscope.

In contrast, with the new proposed quantum mechanical setup, electrons would not directly strike the object being imaged. Instead, an electron would flow around one of two rings, arranged one above the other. The rings would be close enough together that the electron could hop easily between them. However, if an object (such as a cell) were placed between the rings, it would prevent the electron from hopping, and the electron would be trapped in one ring.

This setup would scan one "pixel" of the specimen at a time, putting them all together to create the full image. Whenever the electron is trapped, the system would know that there is a dark pixel in that spot.

Next steps: Assistant Professor Mehmet Fatih Yanik, senior author of the paper, says he expects the work "will likely ignite experimental efforts around the world for its realization, with perhaps the first prototype appearing in five years or so."

Though technical challenges need to be overcome (such as preventing the charged electron from interacting with other metals in the microscope), Yanik believes that eventually such a microscope could achieve single-nanometer resolution. That level of resolution would allow scientists to view molecules such as enzymes and nucleic acids inside living cells.

Source: "Non-destructive Electron Microscopy and Interaction-free Quantum Measurements," William Putnan and Mehmet Fatih Yanik. Physical Review A — Rapid Communications, October issue.

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: electron microscope enzymes living cell living cells nucleic acids

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>