Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU-made space tool sets for inter-planetary mission

03.11.2011
A Russian spacecraft carrying the state-of-the-art space tool made by The Hong Kong Polytechnic University (PolyU) is set to embark on a one-year space journey to the Red Planet at the Baikonur Cosmodrome in Kazakhstan on 8 November 2011 Moscow time.

A Russian spacecraft carrying the state-of-the-art space tool made by The Hong Kong Polytechnic University (PolyU) is set to embark on a one-year space journey to the Red Planet at the Baikonur Cosmodrome in Kazakhstan on 8 November 2011 Moscow time.


Copyright : The Hong Kong Polytechnic University

This historical mission, also known as the "Phobos-Grunt" (which means soil of Phobos, the largest moon of Mars), marks the first strategic interplanetary collaboration between China and Russia. This is also the first interplanetary mission of Russia after the dissolution of the former Soviet Union. PolyU has been entrusted with the responsibility of designing a mission-critical space tool known as the "Soil Preparation System" (SOPSYS) for the Sino-Russian Mars Mission.

Of interest to the scientific community will be the mission's first bold attempt in the history of mankind to land on the Martian moon Phobos and collect soil sample for in-situ analysis. If the mission goes as planned, the spacecraft carrying both PolyU-made space tool and Chinese satellite Yinghuo-1 will go near the Red Planet in November 2012. The explorer will then release Yinghuo-1 into orbit around Mars; and seek to release the Lander carrying PolyU-made SOPSYS onto the surface of the potato-shaped Martian moon Phobos.

SOPSYS weighs merely 400 grams and measures slightly larger than a cigarette pack. It is capable of grinding and sifting Phobos rock to the size of less than 1mm in diameter and then from it into a plug of measured size for in situ analysis. This procedure is considered a crucial step in understanding the evolution of the universe and the formation of the planet Mars.

PolyU researchers have been working closely with IKI (Space Research Institute of the Russian Academy of Science) and the Russian aerospace company NPO Lavochkin in testing the functionality of SOPSYS under extreme environment. Dr Alexander V Zakharov, Chief Scientist of the Space Research Institute of the Russian Academy of Science and Project Scientist of the Phobos-Soil project, also visited PolyU and discussed the stringent requirements for testing the qualifying model of this tool with PolyU engineering scientists working on the project.

The aerospace authorities of China and Russia agreed to jointly probe Mars and its innermost moon Phobos, following the signing of space collaboration agreement as witnessed by Chinese President Hu Jintao and former Russian President Vladimir Putin on 26 March 2007 during a state visit of Chairman Hu to Russia. Apart from in-situ analysis, the probe will also be making a Mars-Earth return journey to study the soil sample and the effect of cosmic radiation on the Life capsule containing bacteria onboard the spacecraft.

This collaboration with Russian Space Agency is made possible with the unremitting efforts of PolyU Fellow Dr Ng Tze-chuen, who is a dentist by profession; and Professor Yung Kai-leung, Associate Head of the University's Department of Industrial and Systems Engineering. They have put much effort in negotiating with space authorities and showed their experience of developing space tools and working with the Russian Space Agency and European Space Agency.

The University has a wealth of experience in developing space tools and for space agencies over the years. SOPSYS is also designed by Professor Yung and locally manufactured at the University' Industrial Centre.

The development of space tool by PolyU researchers can be dated back to 1995 with the launch of the Space Holiner Forceps for Russian astronauts working on the MIR Space Station. The Holinser Forceps, which function like a pair of dental forceps, were designed and developed by PolyU scientists and engineers from a concept initiated by Dr Ng. The idea was further developed into the Space Forceps System which consists of 70 inter-connectable components for used by astronauts in space. In 1995, four sets of Holinser Forceps were ordered by the Russian Space Agency for use by astronauts in precision soldering at the MIR Space Station.

In 2003, PolyU scientists also designed and developed the Mars Rock Corer which was carried onboard the Beagle 2 Lander in a spacecraft of the European Space Agency's Mars Express Mission. Although the Beagle 2 Lander reportedly crashed on the surface of Mars, PolyU researchers never give up their dream for space exploration. Professor Yung is also involved in designing the "Camera Pointing System" for Phase 2 of China's lunar exploration programme, which will be carried on board the Chang'e-3 spacecraft scheduled to be launched towards the end of 2012.

Press contact: Mr Wilfred Lai
Division Head (Media and Community Relations)
Tel: (852) 2766 5218
Email: pawilfred@inet.polyu.edu.hk

Associated links
http://www.polyu.edu.hk/cpa/polyu/index.php?search=&press_section=&press_category=All&press_date=&mode=pressrelease&
Itemid=223&option=com_content&page=1&order=desc&orderby=news_date&press_
id=2177&lang=en

Regina Yu | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>