Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU gears up for Sino-Russian Interplanetary Space Mission

01.12.2008
PolyU is working closely with the Russian Space Agency in designing a state-of-the-art space tool which will be carried onboard a Russian spacecraft for the Red Planet in the 2009 Sino-Russian Space Mission.

The Hong Kong Polytechnic University (PolyU) is working closely with the well-established Russian Space Agency in designing a state-of-the-art space tool which will be carried onboard a Russian spacecraft for the Red Planet in the 2009 Sino-Russian Space Mission – the first strategic interplanetary collaboration between China and Russia.

This historical mission also marks the first interplanetary space mission by Russia since the dissolution of the former Soviet Union. This is also the first attempt in the history of mankind to land on the moon of a planet other than the Earth. This is also the first ever interplanetary sample return mission, and PolyU has been entrusted with the responsibility of designing a mission-critical space tool known as the "Soil Preparation System" (SOPSYS).

Dr Alexander V Zakharov, Chief Scientist of the Space Research Institute of the Russian Academy of Science and Project Scientist of the Phobos-Soil project, has made a special trip to the University this week and discussed stringent requirements for testing the qualifying model of this tool with PolyU engineering scientists working on the project.

The PolyU-developed sophisticated device weighs merely 400 grams and measures slightly larger than a cigarette pack. It will be capable of grinding and sifting Phobos rock to the size of less than 1mm in diameter for in situ analysis by the Lander. This procedure is considered a crucial step in understanding the evolution of the universe and in searching for possible signs of life on the extraterrestrial planet.

The aerospace authorities of the two nations agreed to jointly probe Mars and its innermost moon Phobos, following the signing of space collaboration agreement as witnessed by Chinese President Hu Jintao and Russian President Vladimir Putin on 26 March 2007. According to mission schedule, Russia will launch an explorer carrying a Chinese satellite and a lander installed with PolyU-made device to collect samples of Phobos soil.

The objectives of this inter-planetary space mission are to collect soil samples from Phobos, a satellite of Mars and to bring the samples back to Earth for comprehensive scientific research into Phobos, Mars and Martian space.

This collaboration with Russian Space Agency is made possible with the unremitting efforts of PolyU Fellow Dr Ng Tze-chuen, who is a dentist by profession; and Prof. Yung Kai-leung, Associate Head of the Department of Industrial and Systems Engineering. They have put much effort in negotiating with space authorities and showed their experience of developing space tools and working with the Russian Space Agency and European Space Agency. SOPSYS is designed and manufactured by Prof. Yung and engineers of PolyU's Industrial Centre, with the full support of the Centre's Director Dr Chris Wong Ho-ching. The system is currently near the final stage of development, and will be ready for the mission by the end of this year.

The University has a wealth of experience in developing space tools and for space agencies over the years. The development of space tool by PolyU researchers can be dated back to 1995 with the launch of the Space Holiner Forceps for Russian astronauts working on the MIR Space Station. The Holinser Forceps, which function like a pair of dental forceps, were developed by PolyU engineers from a concept initiated by Dr Ng. The idea was further developed into the Space Forceps System which consists of 70 inter-connectable components for used by astronauts in space. In 1995, four sets of Holinser Forceps were ordered by the Russian Space Agency for use by astronauts in precision soldering at the MIR Space Station.

In 2003, PolyU scientists also developed the Mars Rock Corer which was carried onboard the Beagle 2 Lander in a spacecraft of the European Space Agency's Mars Express Mission. Although the Beagle 2 Lander reportedly crashed on the surface of Mars, but Dr Ng and PolyU researchers never give up their dream for space exploration.

Arthur Chan | ResearchSEA
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>