Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polarized Microscopy Technique Shows How Proteins Are Arranged

20.04.2011
Whether you’re talking about genes, or neurons, or the workings of a virus, at the most fundamental level, biology is a matter of proteins. So understanding what protein complexes look like and how they operate is the key to figuring out what makes cells tick.

By harnessing the unique properties of polarized light, Rockefeller scientists have now developed a new technique that can help deduce the orientation of specific proteins within the cell. By turning their instruments toward the nuclear pore complex, a huge cluster of proteins that serves as a gateway to a cell’s nucleus, the scientists say they have filled in the gaps left by other techniques and made important new discoveries about how the complex works.



“Our new technique allows us to measure how components of large protein complexes are arranged in relation to one another,” says Sandy Simon, head of the Laboratory of Cellular Biophysics. “This has the potential to give us important new information about how the nuclear pore complex functions, but we believe it can also be applied to other multi-protein complexes such as those involved in DNA transcription, protein synthesis or viral replication.”



Although researchers have spent years studying the workings of the nuclear pore complex, there is still much that has remained mysterious. One problem is that there is a “resolution gap” between the two techniques primarily used to visualize protein complexes. Electron microscopy can reveal the broad outlines of a large protein complex, but it can’t show details. X-ray crystallography, meanwhile, can show minute detail but only of a small piece of the complex; it can’t say how the individual pieces fit together. To further complicate matters, both techniques require fixed samples – while they can give you an idea of what something looks like at a moment in time, they can’t tell you how its pieces might move.



The new technique was developed by Simon along with postdoc Alexa Mattheyses, graduate student Claire Atkinson and Martin Kampmann, a former member of Günter Blobel’s Laboratory of Cell Biology who is currently at the University of California, San Francisco. It takes advantage of the properties of polarized light to show how specific proteins are aligned in relation to one another. After genetically attaching fluorescent markers to individual components of the nuclear pore complex, the scientists replaced the cell’s own copy of the gene that encodes the protein with the new form that has the fluorescent tag. Then, they used customized microscopes to measure the orientation of the waves of light the fluorescently tagged proteins emitted. By combining these measurements with known data about the structure of the complex, the scientists can confirm or deny the accuracy of previously suggested models.

“Our experimental approach to the structure is synergistic with other studies being conducted at Rockefeller, including analysis with X-ray crystallography in Günter’s lab and electron microscopy and computer analysis in Mike Rout’s lab,” says Simon. “By utilizing multiple techniques, we are able to get a more precise picture of these complexes than has ever been possible before.”



The scientists used the technique to study nuclear pore complexes in both budding yeast and human cells. In the case of the human cells, their new data shows that multiple copies of a key building block of the nuclear pore complex, the Y-shaped subcomplex, are arranged head-to-tail, rather than like fence posts, confirming a model proposed by Blobel in 2007.

“As a graduate student with Günter Blobel, I determined the three-dimensional structure of the Y-shaped subcomplex using electron microscopy,” says Kampmann. “However, it was still a mystery how these ‘Y’s are arranged. The new technique we have developed reveals the orientation of building blocks in the cell, and we hope that it will eventually enable us to assemble individual crystal structures into a high-resolution map of the entire nuclear pore complex.”



Eventually, the scientists say their technique could go even further. Because the proteins’ fluorescence can be measured while the cells are still alive, it could give scientists new insights into how protein complexes react to varying environmental conditions, and how their configurations change over time.



“What happens when other proteins pass through the nuclear pore? Does the orientation of the nucleoporins change? With this technique, we can find out not only what the pore looks like when it’s sitting still, but what happens to it when it’s active,” Simon says.

Zach Veilleux | Newswise Science News
Further information:
http://www.rockefeller.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>