Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar vortices observed in ferroelectric

01.02.2016

New state of matter holds promise for ultracompact data storage and processing

The observation in a ferroelectric material of "polar vortices" that appear to be the electrical cousins of magnetic skyrmions holds intriguing possibilities for advanced electronic devices. These polar vortices, which were theoretically predicted more than a decade ago, could also "rewrite our basic understanding of ferroelectrics" according to the researchers who observed them.


The first ever observations of polar vortices in a ferroelectic material could find potential applications in ultracompact data storage and processing and the production of new states of matter.

Credit: Berkeley Lab

A team of scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have recorded the first ever observations of rotating topologies of electrical polarization that are similar to the discrete swirls of magnetism known as "skyrmions." If these smoothly rotating vortex/anti-vortex topologies prove to be electrical skyrmions, they could find potential applications in ultracompact data storage and processing, and could also lead to the production of new states of matter and associated phenomena in ferroic materials.

"It has long been thought that rotating topological structures are confined to magnetic systems and aren't possible in ferroelectric materials, but through the creation of artificial superlattices, we have controlled the various energies of a ferrolectric material to promote competition that lead to such new states of matter and polarization arrangements," says Ramamoorthy Ramesh, Berkeley Lab's Associate Laboratory Director for Energy Technologies and the co-principal investigator for this study. He also holds UC Berkeley's Purnendu Chatterjee Endowed Chair in Energy Technologies.

"Ferroelectric materials such as the materials used in this work

have produced a number of exciting emergent properties over the years, but these smoothly-rotating polar vortex structures really are different," says Lane Martin, a faculty scientist with Berkeley Lab's Materials Sciences Division and Associate Professor in UC Berkeley's Department of Materials Science and Engineering, who is this study's co-principal investigator. "I think if you surveyed the community many would shake their heads in disbelief at such structures, but it turns out there really is a tendency for vortex states to form in nature even in these polar systems. And, when one looks more broadly, vortex structures can occur across huge length scales - from galaxies and weather systems all the way down to 10s of atoms as in our case."

Ramesh and Martin are the corresponding authors of a Nature paper describing this study in detail. The paper is titled "Observation of Polar Vortices in Oxide Superlattices." The lead researchers on this work are Ajay Yadav, Christopher Nelson, and Anoop Damodaran who also hold joint appointments with Berkeley Lab and UC Berkeley. (Full list of authors below.)

Ferroic materials display unique electrical or magnetic properties - or both in the case of multiferroics. For example, the electrical field of a ferroelectric material can be polarized in favor of either a positive or negative charge with the application of an external electrical field. In a ferromagnetic material, the application of an external magnetic field aligns the spin of their charged particles, resulting in the material becoming a permanent magnet. In recent years, it was discovered that the application of an external magnetic field can also produce atom-sized cyclones of skyrmions, which act like baryon particles and can be moved coherently over macroscopic distances. These properties make skyrmions excellent candidates for spintronic applications.

"We believe the polar vortices we observed in ferroelectrics, when fully explored, have the potential to be topological states of matter that are similar to magnetic skyrmions," Ramesh says. "The fact that our polar vortices can display emergent behavior in their electronic, optical, magnetic and other properties suggests that heretofore unexplored applications and functionalities could be possible."

Ramesh, Martin and their collaborators worked with what has become a canonical system in the community, ultrafine layered structures built from lead titanate and strontium titante compounds controlled down to a few unit cells each, in which each unit cell is approximately 0.4 nanometers thick. They created superlattices that harbored a three-way competition between elastic, electrostatic and gradient energies within the layers of lead titanate and strontium titanate. This unique three-way competition gives rise to the polar vortices.

"As we tune the period lengths of our superlattices, we can tune the relative importance of these three energy scales," Martin says. "Although rather exotic things can occur if one changes the superlattice period to be both smaller and bigger than we studied here, we really found the 'sweet-spot' in this work that produced these polar vortices which are an entirely new phenomenon."

A combination of scanning transmission electron microscopy (STEM) and X-ray diffraction studies were used observe and characterize the polar vortices. The STEM work was carried out at Berkeley Lab's Molecular Foundry, a DOE Office of Science User Facility, on TEAM 0.5, the world's most powerful transmission electron microscope. The X-ray diffraction work was carried out at the Advanced Photon Source, another DOE Office of Science User Facility, which is hosted by DOE's Argonne National Laboratory.

"Our study is really indicative of how DOE-funded research programs can bring together a diverse range of expertise, including atomically-controlled materials synthesis and cutting-edge research facilities, and materials theory to enable foundational discoveries that really change the way we think about exotic materials and the possibilities for using them," says Ramesh.

"This is just the beginning for the study of polar vortices in ferroelectric materials," Martin says. "We're observing a new state of matter and we have our work cut out for us in mapping and understanding how it evolves. We can imagine adding a magnetic spin component to similar superlattices and thus potentially paving a pathway to fundamentally demonstrate electric-field control of magnetism."

###

Other co-authors of the Nature paper were Shang-Lin Hsu, Zijian Hong, James Clarkson, Christian Schlepüetz, Anoop Damodaran, Padraic Shafer, Elke Arenholz, Liv Dedon, Deyang Chen, Ashvin Vishwanath, Andrew Minor, Long-Qing Chen and Jason Scott.

This research was primarily funded by the DOE Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

Lynn Yarris | EurekAlert!

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>