Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar vortices observed in ferroelectric

01.02.2016

New state of matter holds promise for ultracompact data storage and processing

The observation in a ferroelectric material of "polar vortices" that appear to be the electrical cousins of magnetic skyrmions holds intriguing possibilities for advanced electronic devices. These polar vortices, which were theoretically predicted more than a decade ago, could also "rewrite our basic understanding of ferroelectrics" according to the researchers who observed them.


The first ever observations of polar vortices in a ferroelectic material could find potential applications in ultracompact data storage and processing and the production of new states of matter.

Credit: Berkeley Lab

A team of scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have recorded the first ever observations of rotating topologies of electrical polarization that are similar to the discrete swirls of magnetism known as "skyrmions." If these smoothly rotating vortex/anti-vortex topologies prove to be electrical skyrmions, they could find potential applications in ultracompact data storage and processing, and could also lead to the production of new states of matter and associated phenomena in ferroic materials.

"It has long been thought that rotating topological structures are confined to magnetic systems and aren't possible in ferroelectric materials, but through the creation of artificial superlattices, we have controlled the various energies of a ferrolectric material to promote competition that lead to such new states of matter and polarization arrangements," says Ramamoorthy Ramesh, Berkeley Lab's Associate Laboratory Director for Energy Technologies and the co-principal investigator for this study. He also holds UC Berkeley's Purnendu Chatterjee Endowed Chair in Energy Technologies.

"Ferroelectric materials such as the materials used in this work

have produced a number of exciting emergent properties over the years, but these smoothly-rotating polar vortex structures really are different," says Lane Martin, a faculty scientist with Berkeley Lab's Materials Sciences Division and Associate Professor in UC Berkeley's Department of Materials Science and Engineering, who is this study's co-principal investigator. "I think if you surveyed the community many would shake their heads in disbelief at such structures, but it turns out there really is a tendency for vortex states to form in nature even in these polar systems. And, when one looks more broadly, vortex structures can occur across huge length scales - from galaxies and weather systems all the way down to 10s of atoms as in our case."

Ramesh and Martin are the corresponding authors of a Nature paper describing this study in detail. The paper is titled "Observation of Polar Vortices in Oxide Superlattices." The lead researchers on this work are Ajay Yadav, Christopher Nelson, and Anoop Damodaran who also hold joint appointments with Berkeley Lab and UC Berkeley. (Full list of authors below.)

Ferroic materials display unique electrical or magnetic properties - or both in the case of multiferroics. For example, the electrical field of a ferroelectric material can be polarized in favor of either a positive or negative charge with the application of an external electrical field. In a ferromagnetic material, the application of an external magnetic field aligns the spin of their charged particles, resulting in the material becoming a permanent magnet. In recent years, it was discovered that the application of an external magnetic field can also produce atom-sized cyclones of skyrmions, which act like baryon particles and can be moved coherently over macroscopic distances. These properties make skyrmions excellent candidates for spintronic applications.

"We believe the polar vortices we observed in ferroelectrics, when fully explored, have the potential to be topological states of matter that are similar to magnetic skyrmions," Ramesh says. "The fact that our polar vortices can display emergent behavior in their electronic, optical, magnetic and other properties suggests that heretofore unexplored applications and functionalities could be possible."

Ramesh, Martin and their collaborators worked with what has become a canonical system in the community, ultrafine layered structures built from lead titanate and strontium titante compounds controlled down to a few unit cells each, in which each unit cell is approximately 0.4 nanometers thick. They created superlattices that harbored a three-way competition between elastic, electrostatic and gradient energies within the layers of lead titanate and strontium titanate. This unique three-way competition gives rise to the polar vortices.

"As we tune the period lengths of our superlattices, we can tune the relative importance of these three energy scales," Martin says. "Although rather exotic things can occur if one changes the superlattice period to be both smaller and bigger than we studied here, we really found the 'sweet-spot' in this work that produced these polar vortices which are an entirely new phenomenon."

A combination of scanning transmission electron microscopy (STEM) and X-ray diffraction studies were used observe and characterize the polar vortices. The STEM work was carried out at Berkeley Lab's Molecular Foundry, a DOE Office of Science User Facility, on TEAM 0.5, the world's most powerful transmission electron microscope. The X-ray diffraction work was carried out at the Advanced Photon Source, another DOE Office of Science User Facility, which is hosted by DOE's Argonne National Laboratory.

"Our study is really indicative of how DOE-funded research programs can bring together a diverse range of expertise, including atomically-controlled materials synthesis and cutting-edge research facilities, and materials theory to enable foundational discoveries that really change the way we think about exotic materials and the possibilities for using them," says Ramesh.

"This is just the beginning for the study of polar vortices in ferroelectric materials," Martin says. "We're observing a new state of matter and we have our work cut out for us in mapping and understanding how it evolves. We can imagine adding a magnetic spin component to similar superlattices and thus potentially paving a pathway to fundamentally demonstrate electric-field control of magnetism."

###

Other co-authors of the Nature paper were Shang-Lin Hsu, Zijian Hong, James Clarkson, Christian Schlepüetz, Anoop Damodaran, Padraic Shafer, Elke Arenholz, Liv Dedon, Deyang Chen, Ashvin Vishwanath, Andrew Minor, Long-Qing Chen and Jason Scott.

This research was primarily funded by the DOE Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

Lynn Yarris | EurekAlert!

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>