Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poised for Discovery: Gemini’s Much-anticipated Infrared Instrument Goes On-sky

09.08.2013
Gemini Observatory’s latest instrument, a powerful infrared camera and spectrograph at Gemini South, reveals its potential in a series of striking on-sky commissioning images released today.

Gemini Observatory’s latest tool for astronomers, a second-generation infrared instrument called FLAMINGOS-2, has “traveled a long road” to begin science observations for the Gemini scientific community. Recent images taken by FLAMINGOS-2 during its last commissioning phase dramatically illustrate that the instrument was worth the wait for astronomers around the world who are anxious to begin using it.

“It’s already one of our most requested instruments at the Gemini telescopes,” remarks Nancy Levenson, Gemini’s Deputy Director and Head of Science. “We see a long and productive life ahead for FLAMINGOS-2 once astronomers really start using it later this year.”

“It has not been an easy journey,” says Percy Gomez Gemini’s FLAMINGOS-2 Instrument Scientist, “but thanks to the dedicated work of Gemini engineers and scientists very soon astronomers will be able to use a reliable and robust instrument.” After significant redesign and rebuilds for optimal performance on the Gemini South telescope, FLAMINGOS-2 has proven that it will provide astronomers with a powerful mix of capabilities. These include extreme sensitivity to infrared (heat) radiation from the universe, high-resolution wide-field imaging, and a combination of spectroscopic capabilities that will allow cutting-edge research in topics spanning from the exploration of our Solar System, to the most distant and energetic explosions in our universe.

While work still remains on some of its spectroscopic features, as well as refining imaging at the edge of its large field of view, Gemini’s team of engineers and scientists has mitigated its most severe risk – potential damage to a large collimator lens that catastrophically cracked during a planned final commissioning in early 2012 (it was later replaced). The thermal environment surrounding this lens – located where the temperature changes periodically for routine switching of masks for multi-object spectroscopy - creates special challenges. It was these temperature changes that initially caused the crack, but a year later procedures and design modifications are now in place to significantly reduce risks to the lens’s integrity and functionality.

“The Gemini team has done a remarkable job in optimizing this instrument for Gemini and it will soon be everything, and more, that we had envisioned years ago when the project began,” says Steve Eikenberry, who led the team who built FLAMINGOS-2 at the University of Florida. “Like a lot of scientists, I’m anxious to use FLAMINGOS-2 to collect data – specifically, I want to look toward the center of our Galaxy and study binary black holes as well as the mass evolution of the super-massive black hole that lurks at the heart of our Galaxy.” Eikenberry and collaborators are eager to make the most of FLAMINGOS-2’s power as soon as the instrument’s multi-object spectroscopy capability is fully functional. “With most of the challenges behind us, now the fun begins!” Eikenberry said.

Kevin Stevenson of the University of Chicago already has plans to use FLAMINGOS-2 later this year to study the intriguing exoplanet WASP-18b. This well-known exoplanet is being strongly heated by its ultra-nearby host star and according to Stevenson, “It's even hotter than some of the coolest, low-mass stars known.” Stevenson and his team hope to determine the abundances of water vapor and methane when the planet is eclipsed by its host star. “Our plan is to compare the system's light immediately before and during an eclipse to measure the contribution from the planet. When we do this over several parts of the infrared part of the light spectrum, we can piece together the planet's spectrum and learn about its temperature and composition.”

The quality and usefulness of FLAMINGOS-2 for these and future projects is reflected in the images released today. They cover a wide range of targets which are representative of the types of science in which FLAMINGOS-2 is expected to excel. In addition, the instrument may later accept an adaptive optics (AO) feed for extremely high-resolution imaging from GeMS (Gemini Multi-conjugate adaptive optics System).

It is expected that most of these systems, including multi-object spectroscopy, will be fully integrated in 2014 with imaging and long-slit spectroscopy available now. The next round of observations with FLAMINGOS-2 are slated to begin on September 1st.

Gemini's mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai'i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country's contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

Contacts:

Percy Gomez
Gemini Observatory, La Serena, Chile
Phone (Desk): 56-51-2-205696
Email: pgomez”at”gemini.edu
Peter Michaud
Gemini Observatory, Hilo, Hawai‘i
Office: +1 (808) 974-2510
Cell: +1 (808) 936-6643
pmichaud"at"gemini.edu
Antonieta Garcia
Gemini Observatory, La Serena, Chile
Phone (Desk): 56-51-2-205628
Cell: 09-69198294
Email: agarcia"at"gemini.edu

Peter Michaud | EurekAlert!
Further information:
http://www.gemini.edu/node/12047
http://www.gemini.edu

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>