Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plutonium's unusual interactions with clay may minimize leakage of nuclear waste

As a first line of defense, steel barrels buried deep underground are designed to keep dangerous plutonium waste from seeping into the soil and surrounding bedrock, and, eventually, contaminating the groundwater.

But after several thousand years, those barrels will naturally begin to disintegrate due to corrosion. A team of scientists at Argonne National Lab (ANL) in Argonne, Ill., has determined what may happen to this toxic waste once its container disappears.

"We want to be sure that nuclides (like plutonium) stay where we put them," says Moritz Schmidt, an ANL post-doctoral researcher who will present his team's work at the AVS Symposium in Nashville, Tenn., held Oct. 30 – Nov. 4. Understanding how these radioactive molecules behave is "the only way we can make educated decisions about what is a sufficient nuclear waste repository and what is not," he adds.

Plutonium, with its half-life of 24 thousand years, is notoriously difficult to work with, and the result is that very little is known about the element's chemistry. Few labs around the world are equipped to handle its high radioactivity and toxicity, and its extremely complicated behavior around water makes modeling plutonium systems a formidable task.

Plutonium's extraordinary chemistry in water also means scientists cannot directly equate it with similar elements to tell them how plutonium will behave in the environment. Other ions tend to stick to the surface of clay as individual atoms. Plutonium, on the other hand, bunches into nanometer-sized clusters in water, and almost nothing is known about how these clusters interact with clay surfaces.

To better understand how this toxic substance might respond to its environment, the Argonne team examined the interactions between plutonium ions dissolved in water and a mineral called muscovite. This mineral is structurally similar to clay, which is often considered for use in waste repository sites around the world due to its strong affinity for plutonium. Using a range of X-ray scattering techniques, the scientists reconstructed images of thin layers of plutonium molecules sitting on the surface of a slab of muscovite.

What they found was "very interesting," Schmidt says. The Argonne scientists discovered that plutonium clusters adhere much more strongly to mineral surfaces than individual plutonium ions would be expected to. The result of this strong adherence is that plutonium tends to become trapped on the surface of the clay, a process which could help contain the spread of plutonium into the environment.

"In this respect, it's a rather positive effect" that his group has observed, Schmidt says; but, he adds, "it's hard to make a very general statement" about whether this would alter the rate of plutonium leaking out of its repository thousands of years from now.

Schmidt cautions that these are fundamental studies and probably will not have an immediate impact on the design of plutonium-containing structures; however, he stresses that this work shows the importance of studying plutonium's surface reactivity at a molecular level, with potential future benefits for nuclear waste containment strategies.

"This is a field that is only just emerging," Schmidt says.

The AVS 58th International Symposium & Exhibition will be held Oct. 30 – Nov. 4 at the Nashville Convention Center.

Presentation AC+TF-ThA-1, "Plutonium Sorption and Reactivity at the Solid/Water Interface," is at 2 p.m. on Thursday, Nov. 3.


Main meeting website:

Technical Program:

Catherine Meyers | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>