Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plutonium's unusual interactions with clay may minimize leakage of nuclear waste

03.11.2011
As a first line of defense, steel barrels buried deep underground are designed to keep dangerous plutonium waste from seeping into the soil and surrounding bedrock, and, eventually, contaminating the groundwater.

But after several thousand years, those barrels will naturally begin to disintegrate due to corrosion. A team of scientists at Argonne National Lab (ANL) in Argonne, Ill., has determined what may happen to this toxic waste once its container disappears.

"We want to be sure that nuclides (like plutonium) stay where we put them," says Moritz Schmidt, an ANL post-doctoral researcher who will present his team's work at the AVS Symposium in Nashville, Tenn., held Oct. 30 – Nov. 4. Understanding how these radioactive molecules behave is "the only way we can make educated decisions about what is a sufficient nuclear waste repository and what is not," he adds.

Plutonium, with its half-life of 24 thousand years, is notoriously difficult to work with, and the result is that very little is known about the element's chemistry. Few labs around the world are equipped to handle its high radioactivity and toxicity, and its extremely complicated behavior around water makes modeling plutonium systems a formidable task.

Plutonium's extraordinary chemistry in water also means scientists cannot directly equate it with similar elements to tell them how plutonium will behave in the environment. Other ions tend to stick to the surface of clay as individual atoms. Plutonium, on the other hand, bunches into nanometer-sized clusters in water, and almost nothing is known about how these clusters interact with clay surfaces.

To better understand how this toxic substance might respond to its environment, the Argonne team examined the interactions between plutonium ions dissolved in water and a mineral called muscovite. This mineral is structurally similar to clay, which is often considered for use in waste repository sites around the world due to its strong affinity for plutonium. Using a range of X-ray scattering techniques, the scientists reconstructed images of thin layers of plutonium molecules sitting on the surface of a slab of muscovite.

What they found was "very interesting," Schmidt says. The Argonne scientists discovered that plutonium clusters adhere much more strongly to mineral surfaces than individual plutonium ions would be expected to. The result of this strong adherence is that plutonium tends to become trapped on the surface of the clay, a process which could help contain the spread of plutonium into the environment.

"In this respect, it's a rather positive effect" that his group has observed, Schmidt says; but, he adds, "it's hard to make a very general statement" about whether this would alter the rate of plutonium leaking out of its repository thousands of years from now.

Schmidt cautions that these are fundamental studies and probably will not have an immediate impact on the design of plutonium-containing structures; however, he stresses that this work shows the importance of studying plutonium's surface reactivity at a molecular level, with potential future benefits for nuclear waste containment strategies.

"This is a field that is only just emerging," Schmidt says.

The AVS 58th International Symposium & Exhibition will be held Oct. 30 – Nov. 4 at the Nashville Convention Center.

Presentation AC+TF-ThA-1, "Plutonium Sorption and Reactivity at the Solid/Water Interface," is at 2 p.m. on Thursday, Nov. 3.

USEFUL LINKS:

Main meeting website: http://www2.avs.org/symposium/AVS58/pages/greetings.html

Technical Program: http://www2.avs.org/symposium

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>