Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Playing quantum tricks with measurements

15.02.2013
A team of physicists at the University of Innsbruck, Austria, performed an experiment that seems to contradict the foundations of quantum theory – at first glance.

Ion trap
Photo: C. Lackner/IQOQI

The team led by Rainer Blatt reversed a quantum measurement in a prototype quantum information processor. The experiment is enabled by a technique that has been developed for quantum error correction in a future quantum computer.

Measurements on quantum systems have puzzled generations of physicists due to their counterintuitive properties. One of them is the fact that measurements on a quantum system are in general non-deterministic.

This means that even if the state of the system is completely known, it is impossible to determine the outcome of a single measurement. Furthermore, the measurement alters the system’s state so that a previous measurement will certainly return the same result as the first measurement. Thus the system is irreversibly altered by a measurement.

In their recent experiment, the scientists demonstrated that it is possible to reverse a measurement with the aid of a quantum error correction protocol. This seemingly contradicts the foundations of quantum theory which explicitly forbid the reversal of a quantum measurement. With a closer look it is easy to solve this riddle:

The team around Philipp Schindler transfers the information of a single particle onto an entangled state consisting of three particles. If now an individual particle is measured, its original state can be reconstructed from the information residing in the remaining two particles which is not forbidden by the laws of quantum mechanics.

Publication: Undoing a quantum measurement. Philipp Schindler, Thomas Monz, Daniel Nigg, Julio T. Barreiro, Esteban A. Martinez, Matthias F. Brandl, Michael Chwalla, Markus Hennrich, Rainer Blatt. Physical Review Letters 110, 070403 (2013). DOI: 10.1103/PhysRevLett.110.070403

Contact:
Philipp Schindler
Institute of Experimental Physics
University of Innsbruck, Austria
Telefon: +43 512 507-52453
E-Mail: philipp.schindler@uibk.ac.at
Christian Flatz
Public Relations Office
University of Innsbruck, Austria
Telefon: +43 512 507-32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.uibk.ac.at
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.070403

More articles from Physics and Astronomy:

nachricht Physicists consider implications of recent revelations about the universe's first light
23.04.2014 | The Kavli Foundation

nachricht Liquid spacetime
23.04.2014 | International School of Advanced Studies (SISSA)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Siemens at the 2014 UIC ERTMS World Conference in Istanbul

01.04.2014 | Event News

AERA Meeting: German and US-American educational researchers in dialogue

28.03.2014 | Event News

WHS Regional Meeting: International experts address health challenges in Latin America

24.03.2014 | Event News

 
Latest News

Pilot study suggests ways to widen access to fecal transplants for C. diff infections

24.04.2014 | Health and Medicine

WSU innovation improves drowsy driver detection

24.04.2014 | Automotive Engineering

Building Stronger Bridges

23.04.2014 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>