Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasmonics: When silver is better than gold

22.06.2012
Silver nanostructures exhibit a resonance feature that is useful for a multitude of sensing applications.
Silver nanostructures exhibit a resonance feature that is useful for a multitude of sensing applications.

Certain metallic nanostructures are known to exhibit a distinctly asymmetric spectral feature. This characteristic feature, known as a Fano resonance, has attracted a considerable amount of attention due to its potential in sensing applications.

Fano resonance is caused by the interference of two eigenmodes (modes of electron excitations), so its shape and wavelength are sensitive to slight variations in the environment. A small change in the refractive index, for example, could lead to a big change in the Fano resonance.

So far, most of the metallic structures used to generate Fano resonances have been made of gold. The wavelength of such Fano resonances is typically in the infrared region, which is not ideal for practical sensing applications. Jing Bo Zhang and co-workers at the A*STAR Data Storage Institute have now proposed a silver dual-disk ring nanostructure for generating Fano resonance in the visible range.

The nanostructure comprises a dual-disk ring consisting of two silver disks, measuring tens of nanometers wide, placed inside a silver ring. The researchers calculated the optical modes of the structures using the finite-difference time-domain (FDTD) method. They found that the coupling between one of the dual-disk eigenmodes and one of the ring eigenmodes produces a Fano resonance just below 700 nanometers in wavelength, well within the visible spectrum.

The shape and wavelength of the Fano resonance can be finely tuned by varying the geometric parameters that define the dual-disk ring structure. The key capability of a biomolecule sensor is its reaction to a change in the surroundings. The calculations showed that by increasing the refractive index of the environment, the Fano resonance is strongly red-shifted. This is to simulate for a case in which a thin coat of a dielectric material, such as a layer of specific biomolecules, is assumed to cover the nanostructure.

The calculations were promising but had to be verified experimentally. The researchers used electron beam lithography and corresponding nanoprocessing techniques to fabricate silver dual-disk rings on quartz and indeed observed Fano resonance in the visible light range.

Observation of the Fano resonance and its sensitivity to environmental changes in the visible range is an important result for sensing applications. The researchers aim to improve the design of the nanostructure further. “We have already determined and fabricated the optimum geometry of dual-disk ring structures for biosensing,” says Zhang. “Next we are going to functionalize the surface of the structure chemically to examine and improve the sensing power experimentally.”

References:

Niu, L., Zhang, J. B., Fu, Y. H., Kulkarni, S. & Luk'yanchuk, B. Fano resonance in dual-disk ring plasmonic nanostructures. Optics Express 19, 22974–22981 (2011).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>