Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasmonics: When silver is better than gold

22.06.2012
Silver nanostructures exhibit a resonance feature that is useful for a multitude of sensing applications.
Silver nanostructures exhibit a resonance feature that is useful for a multitude of sensing applications.

Certain metallic nanostructures are known to exhibit a distinctly asymmetric spectral feature. This characteristic feature, known as a Fano resonance, has attracted a considerable amount of attention due to its potential in sensing applications.

Fano resonance is caused by the interference of two eigenmodes (modes of electron excitations), so its shape and wavelength are sensitive to slight variations in the environment. A small change in the refractive index, for example, could lead to a big change in the Fano resonance.

So far, most of the metallic structures used to generate Fano resonances have been made of gold. The wavelength of such Fano resonances is typically in the infrared region, which is not ideal for practical sensing applications. Jing Bo Zhang and co-workers at the A*STAR Data Storage Institute have now proposed a silver dual-disk ring nanostructure for generating Fano resonance in the visible range.

The nanostructure comprises a dual-disk ring consisting of two silver disks, measuring tens of nanometers wide, placed inside a silver ring. The researchers calculated the optical modes of the structures using the finite-difference time-domain (FDTD) method. They found that the coupling between one of the dual-disk eigenmodes and one of the ring eigenmodes produces a Fano resonance just below 700 nanometers in wavelength, well within the visible spectrum.

The shape and wavelength of the Fano resonance can be finely tuned by varying the geometric parameters that define the dual-disk ring structure. The key capability of a biomolecule sensor is its reaction to a change in the surroundings. The calculations showed that by increasing the refractive index of the environment, the Fano resonance is strongly red-shifted. This is to simulate for a case in which a thin coat of a dielectric material, such as a layer of specific biomolecules, is assumed to cover the nanostructure.

The calculations were promising but had to be verified experimentally. The researchers used electron beam lithography and corresponding nanoprocessing techniques to fabricate silver dual-disk rings on quartz and indeed observed Fano resonance in the visible light range.

Observation of the Fano resonance and its sensitivity to environmental changes in the visible range is an important result for sensing applications. The researchers aim to improve the design of the nanostructure further. “We have already determined and fabricated the optimum geometry of dual-disk ring structures for biosensing,” says Zhang. “Next we are going to functionalize the surface of the structure chemically to examine and improve the sensing power experimentally.”

References:

Niu, L., Zhang, J. B., Fu, Y. H., Kulkarni, S. & Luk'yanchuk, B. Fano resonance in dual-disk ring plasmonic nanostructures. Optics Express 19, 22974–22981 (2011).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>