Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New plasma transistor could create sharper displays

05.02.2009
By integrating a solid-state electron emitter and a microcavity plasma device, researchers at the University of Illinois have created a plasma transistor that could be used to make lighter, less expensive and higher resolution flat-panel displays.

“The new device is capable of controlling both the plasma conduction current and the light emission with an emitter voltage of 5 volts or less,” said Gary Eden, a professor of electrical and computer engineering, and director of the Laboratory for Optical Physics and Engineering at the U. of I.

At the heart of the plasma transistor is a microcavity plasma, an electronic-photonic device in which an electrically charged gas (a plasma) is contained within a microscopic cavity. Power is supplied by two electrodes at voltages of up to 200 volts.

Eden and graduate student Kuo-Feng (Kevin) Chen fabricated the plasma transistor from copper-clad laminate into which a microcavity 500 microns in diameter was produced by standard photolithographic techniques. The solid-state electron emitter was made from a silicon wafer, topped with a thin layer of silicon dioxide.

The microcavity is approximately the diameter of a human hair, and is filled with a small amount of gas. When excited by electrons, atoms in the plasma radiate light. The color of light depends on what gas is placed in the microcavity. Neon emits red light, for example, and argon emits blue light.

Around the plasma is a thin boundary layer called the sheath. Within the sheath, electrical current is carried not by negatively charged electrons, but instead by positively charged ions. Much heavier than electrons and therefore harder to accelerate, the ions require a large electric field generated by a large voltage drop across the sheath.

The intense electric field within the plasma sheath also promotes electron transport, said Eden, who also is a researcher at the university’s Coordinated Science Laboratory and at the Micro and Nanotechnology Laboratory. “By injecting electrons from the emitter into the sheath, we can significantly increase the flow of electrons through the plasma, which increases the plasma’s conductivity and light emission.”

While the microcavity plasma still requires up to 200 volts to emit light and conduct current, the current and light emission can be controlled by an electron emitter operating at 5 volts or less, Eden said. The current that is sent through the sheath to the bulk plasma determines how much current is carried by the two electrodes driving the microplasma.

In previous work, Eden’s team created flat-panel plasma lamps out of two sheets of aluminum foil separated by a thin dielectric layer of clear aluminum oxide. More than 250,000 lamps can be packed into a single panel. And, because microcavity plasmas operate at atmospheric pressure, thick pieces of glass are not needed to seal them. The lightweight plasma panels are less than 1 millimeter thick.

“Being able to control each microcavity plasma independently could turn our plasma panel into a less expensive and higher resolution plasma display,” Eden said. “The plasma transistor also could be used in applications where you want to use a small voltage to control a great deal of power.”

Eden and Chen described the plasma transistor in the journal Applied Physics Letters. The researchers have applied for a patent.

The work was supported by the U.S. Air Force Office of Scientific Research.

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/09/0204transistor.html

More articles from Physics and Astronomy:

nachricht NASA Protects its super heroes from space weather
17.08.2017 | NASA/Johnson Space Center

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>