Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma produces KO cocktail for MRSA

26.11.2009
MRSA (methicillin-resistant Staphylococcus Aureus) and other drug-resistant bacteria could face annihilation as low-temperature plasma prototype devices have been developed to offer safe, quick, easy and unfailing bactericidal cocktails.

Two prototype devices have been developed: one for efficient disinfection of healthy skin (e.g. hands and feet) in hospitals and public spaces where bacteria can pose a lethal threat; and another to shoot bacteria-killing agents into infested chronic wounds and enable a quicker healing process.

Two papers published today, Thursday 26 November, as part of a selection of papers on Plasma Medicine in New Journal of Physics (co-owned by the Institute of Physics and German Physical Society), demonstrate how far the design of equipment to harness the bacteria-killing power of low-temperature plasma has come.

Plasma, oft called the fourth state of matter after solid, liquid and gas, is defined by its ionized state. In space, stars are made up of high-energy plasma and, on Earth, it is researchers in high-energy plasma that are making significant strides towards limitless energy from nuclear fusion. The high energy of plasma stems from some atoms or molecules in a gas being stripped of their electrons, resulting in a mix of ionized and neutral species.

Also on Earth, scientists have been working on low-temperature and atmospheric-pressure plasma and have found applications in a range of industries, from plastic bag production to the manufacturing of streetlamps and semiconductor circuits.

In a low-temperature plasma, unlike its high-temperature counterparts, the temperature of ions and neutral particles stays low. The 'recipe' for producing such plasmas is simple: the fraction of atoms (molecules) that are ionized – and therefore are hot – is so low that collisions with cold neutral atoms (molecules) quickly reduce their temperature again. The analogy of adding a drop of hot water to a bucket of cold water gives a sense of how low-temperature plasma physicists are able to create plasmas without dramatically increasing the temperature of the overall molecules.

In medicine, low-temperature plasma is already used for the sterilization of surgical instruments as plasma works at the atomic level and is able to reach all surfaces, even the interior of hollow needle ends. Its ability to disinfect is due to the generation of biologically active bactericidal agents, such as free radicals and UV light, which can be delivered to specific locations. It is research into how and why these biologically active agents are generated that has led to the construction of medically invaluable devices.

One research group from the Max Planck Institute for Extraterrestrial Physics has built and trialed a device which is capable of disinfecting human skin safely and quickly (within seconds), annihilating drug-resistant kinds of bacteria that currently cause approximately 37 000 deaths from hospital induced infections every year in EU countries.

On the current disinfection challenge that medical staff face, and that their device will overcome, the researchers write, "The surgeons' disinfection procedure – hand rubbing (3 minutes) or hand scrubbing (5 minutes) – has to be repeated many times a day, with a number of negative side-effects arising from the mechanical irritation, chemical and, possibly, allergic stress for the skin. For the hospital staff, the issue of hand disinfection is equally daunting. Over a typical working day, some 60 to 100 disinfections (in principle) are necessary – each requiring 3 minutes – i.e. a total of 3 to 5 hours!"

The new plasma devices under development cut this down dramatically – to around ten minutes a day. In addition, only electricity is needed, no fluids or containers.

Another device, an 'argon plasma torch', was developed by this group, together with ADTEC Plasma Technology Ltd in Japan, specifically for disinfecting chronic non-healing wounds. One advantage of the 'argon plasma torch' comes from regulating densities of biologically-active agents which are designed to ensure that the plasma is deadly for bacteria but harmless for human cells.

Cell biological studies, conducted together with partners from the Institute of Pathology, Technical University of Munich, are reported and interpreted in terms of chemical reactions which work differently in bacterial and human cells – deadly to the bacteria and supporting cell regeneration in human cells.

After successful trials that show how plasma can be manipulated to very beneficial ends, these researchers write, "One can treat plasmas like a medical cocktail, which contains new and established agents that can be applied at the molecular level to cells in prescribed intensities and overall doses."

This work represents a first step in the direction of 'plasma pharmacology', a step along a path that will require considerable research efforts to harness the full potential of this new field of 'plasma medicine'.

Both research papers describe the mechanics of their trials, the safety concerns they endeavour to overcome, the remarkable bactericidal effect they have successfully achieved, and the positive cell regeneration effects that can be stimulated using plasmas.

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

The world's tiniest first responders

21.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>