Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma produces KO cocktail for MRSA

26.11.2009
MRSA (methicillin-resistant Staphylococcus Aureus) and other drug-resistant bacteria could face annihilation as low-temperature plasma prototype devices have been developed to offer safe, quick, easy and unfailing bactericidal cocktails.

Two prototype devices have been developed: one for efficient disinfection of healthy skin (e.g. hands and feet) in hospitals and public spaces where bacteria can pose a lethal threat; and another to shoot bacteria-killing agents into infested chronic wounds and enable a quicker healing process.

Two papers published today, Thursday 26 November, as part of a selection of papers on Plasma Medicine in New Journal of Physics (co-owned by the Institute of Physics and German Physical Society), demonstrate how far the design of equipment to harness the bacteria-killing power of low-temperature plasma has come.

Plasma, oft called the fourth state of matter after solid, liquid and gas, is defined by its ionized state. In space, stars are made up of high-energy plasma and, on Earth, it is researchers in high-energy plasma that are making significant strides towards limitless energy from nuclear fusion. The high energy of plasma stems from some atoms or molecules in a gas being stripped of their electrons, resulting in a mix of ionized and neutral species.

Also on Earth, scientists have been working on low-temperature and atmospheric-pressure plasma and have found applications in a range of industries, from plastic bag production to the manufacturing of streetlamps and semiconductor circuits.

In a low-temperature plasma, unlike its high-temperature counterparts, the temperature of ions and neutral particles stays low. The 'recipe' for producing such plasmas is simple: the fraction of atoms (molecules) that are ionized – and therefore are hot – is so low that collisions with cold neutral atoms (molecules) quickly reduce their temperature again. The analogy of adding a drop of hot water to a bucket of cold water gives a sense of how low-temperature plasma physicists are able to create plasmas without dramatically increasing the temperature of the overall molecules.

In medicine, low-temperature plasma is already used for the sterilization of surgical instruments as plasma works at the atomic level and is able to reach all surfaces, even the interior of hollow needle ends. Its ability to disinfect is due to the generation of biologically active bactericidal agents, such as free radicals and UV light, which can be delivered to specific locations. It is research into how and why these biologically active agents are generated that has led to the construction of medically invaluable devices.

One research group from the Max Planck Institute for Extraterrestrial Physics has built and trialed a device which is capable of disinfecting human skin safely and quickly (within seconds), annihilating drug-resistant kinds of bacteria that currently cause approximately 37 000 deaths from hospital induced infections every year in EU countries.

On the current disinfection challenge that medical staff face, and that their device will overcome, the researchers write, "The surgeons' disinfection procedure – hand rubbing (3 minutes) or hand scrubbing (5 minutes) – has to be repeated many times a day, with a number of negative side-effects arising from the mechanical irritation, chemical and, possibly, allergic stress for the skin. For the hospital staff, the issue of hand disinfection is equally daunting. Over a typical working day, some 60 to 100 disinfections (in principle) are necessary – each requiring 3 minutes – i.e. a total of 3 to 5 hours!"

The new plasma devices under development cut this down dramatically – to around ten minutes a day. In addition, only electricity is needed, no fluids or containers.

Another device, an 'argon plasma torch', was developed by this group, together with ADTEC Plasma Technology Ltd in Japan, specifically for disinfecting chronic non-healing wounds. One advantage of the 'argon plasma torch' comes from regulating densities of biologically-active agents which are designed to ensure that the plasma is deadly for bacteria but harmless for human cells.

Cell biological studies, conducted together with partners from the Institute of Pathology, Technical University of Munich, are reported and interpreted in terms of chemical reactions which work differently in bacterial and human cells – deadly to the bacteria and supporting cell regeneration in human cells.

After successful trials that show how plasma can be manipulated to very beneficial ends, these researchers write, "One can treat plasmas like a medical cocktail, which contains new and established agents that can be applied at the molecular level to cells in prescribed intensities and overall doses."

This work represents a first step in the direction of 'plasma pharmacology', a step along a path that will require considerable research efforts to harness the full potential of this new field of 'plasma medicine'.

Both research papers describe the mechanics of their trials, the safety concerns they endeavour to overcome, the remarkable bactericidal effect they have successfully achieved, and the positive cell regeneration effects that can be stimulated using plasmas.

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>