Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma experiment demonstrates admirable self-control

14.11.2013
Researchers exploit plasma self-organization as a path to economical fusion power

A team of Chinese and American scientists has learned how to maintain high fusion performance under steady conditions by exploiting a characteristic of the plasma itself: the plasma self-generates much of the electrical current needed for plasma containment in a tokamak fusion reactor. This self-generated, or "bootstrap," current has significant implications for the cost-effectiveness of fusion power.

Magnetic fusion energy research uses magnetic fields to confine the fusion fuel in the form of a plasma (ionized gas) while it is heated to the very high temperatures (more than 100 million degrees) necessary for the ions to fuse and release excess energy that can then be turned into electricity.

The most developed approach uses the tokamak magnetic confinement geometry (a torus shaped vessel), and it is the basis for ITER, a 500-MW heat generating fusion plant currently being built in France by a consortium of seven parties—China, the European Union, India, Japan, Russia, South Korea and the United States.

In the tokamak configuration, the confining magnetic field is generated by external coils and by an electric current flowing within the plasma. The cost of driving these currents has a strong impact on the economic attractiveness of a fusion reactor based on the tokamak approach. One step to minimizing this cost is to make the external coils of superconducting wire.

The second step is to take full advantage of a surprising feature of the tokamak configuration: under certain conditions the electric current in the plasma can be generated by the plasma itself ("bootstrap" current).

The recent joint experiment, carried out on the DIII-D National Fusion Facility at General Atomics in San Diego, involved scientists from the DIII-D tokamak and from the Experimental Advanced Superconducting Tokamak (EAST), a fusion energy research facility at the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in Hefei, China.

Building on earlier DIII-D work, the experiment found that it is feasible for a tokamak to operate reliably at high fusion performance with most (more than 85 percent) of its plasma current consisting of bootstrap current. These conditions were maintained for several seconds, beyond the characteristic time scale of the plasma current evolution, and limited only by DIII-D pulse length constraints.

"It is often said that a plasma with a high fraction of self-generated (bootstrap) current would be difficult to control. However, these experiments show that a high bootstrap fraction plasma is very stable against transients: the plasma seems to 'like' a state where a large fraction of the current is self-generated," said Dr. Andrea Garofalo, General Atomics scientist and co-leader of the joint experiment.

These results build the foundation for follow-up experiments to be conducted on EAST, where the superconducting coils enable extension to very long pulse, and verification of the compatibility of this regime with reactor relevant boundary conditions.

ASIPP Director Prof. Jiangang Li remarked, "After the successful joint experiments in DIII-D, I am fully convinced that the DIII-D results can be reproduced on EAST in the near future, which will help us achieve the demonstration of high fusion performance in long pulse tokamak discharges."

Research Contact:
Andrea Garofalo
General Atomics
(858) 455-2123
garofalo@fusion.gat.com

James Riordon | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>