Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma-in-a-bag for sterilizing devices

10.11.2009
The practice of sterilizing medical tools and devices helped revolutionize health care in the 19th century because it dramatically reduced infections associated with surgery.

Through the years, numerous ways of sterilization techniques have been developed, but the old mainstay remains a 130-year-old device called an autoclave, which is something like a pressure steamer. The advantage of the autoclave is that the unsterile tools can be packed into sealed containers and then processed, staying sealed and sterile after they are removed.

Norbert Koster and his colleagues at TNO Science and Industry, an independent research organization in the Netherlands, are developing a new way to sterilize medical devices by sealing them inside plastic bags and then using electromagnetic fields to create plasmas -- partially ionized gasses that contain free electrons and reactive ions. Scientists have known for a long time that plasmas have the ability to kill bacteria and sterilize objects, but the major problem has always been that plasma-sterilized objects still had to be packed into a sealed container afterwards. There was no way to sterilize them inside sealed containers.

Now Koster and his colleagues have developed a way to do just that, to be presented on November 13 at a meeting of AVS in San Jose. They found a way to sterilize medical tools by sealing them inside vacuum bags and then placing them in chambers that are at even lower pressure. This causes the vacuum pack around the tools to puff out. Then they use an electromagnetic field to remotely ignite a plasma inside the bag, killing the bacteria and viruses therein. When the process is finished and the bag is removed from the chamber, the outside pressure causes it to shrink down again to closely wrap the now sterilized objects, keeping them sealed.

At the moment, Koster and his colleagues are investigating how long the discharge needs to be to destroy all the bacteria and viruses. This technique is not likely to replace the traditional autoclave any time soon, but it opens up the possibility of sterilizing new types of instruments, including devices like detectors and other fancy electronics that would otherwise be damaged by traditional steam-and-heat methods.

The talk "A Novel Way of using Plasma to Sterilize Objects for Use in Medical, Food or Pharmaceutical Applications" is at 9:40 a.m. on Friday, November 13, 2009. Abstract:

http://www.avssymposium.org/Open/SearchPapers.aspx?PaperNumber=PS-FrM-5

INFORMATION FOR JOURNALISTS

The AVS 56th International Symposium & Exhibition lasts from November 8-13, 2009 in San Jose, CA. All meeting information, including directions to the San Jose Convention Center is at: http://www2.avs.org/symposium/

Staff reporters and freelance journalists working on assignment for major media outlets are invited to attend the conference free of charge. Journalist registration instructions can be found at: http://www.avs.org/pdf/pressinvite.pdf

USEFUL LINKS

Online press room: http://www.avs.org/inside.press.aspx

Searchable abstracts: http://www.avssymposium.org/Open/SearchPapers.aspx

Full meeting program: http://www.avssymposium.org/Overview.aspx

Main meeting page: http://www2.avs.org/symposium/AVS56/pages/info.html

ONSITE MEETING PRESS ROOM

The AVS press room will be located in Concourse 1 of the San Jose Convention Center. Press room hours are Monday-Thursday, 8:00-5:00 pm. The phone number there is 408-271-6100. Press Kits containing company product announcements and other news will be available on CD-ROM in the press room.

ABOUT AVS

As a professional membership organization, AVS fosters networking within the materials, processing, and interfaces community at various local, national or international meetings and exhibits throughout the year. AVS publishes four journals, honors and recognizes members through its prestigious awards program, offers training and other technical resources, as well as career services.

Jason Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>