Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plans Shape Up for a Revolutionary New Observatory to Explore Black Holes and the Big Bang

20.05.2011
ASPERA European network for astroparticle physics: Cascina - Italy, 20th of May, 2011.

A new era in astronomy will come a step closer when scientists from across Europe present their design study today for an advanced observatory capable of making precision measurements of gravitational waves – minute ripples in the fabric of spacetime – predicted to emanate from cosmic catastrophes such as merging black holes and collapsing stars and supernovae. It also offers the potential to probe the earliest moments of the Universe just after the Big Bang, which are currently inaccessible.

The Einstein Observatory (ET) is a so-called third-generation gravitational-wave (GW) detector, which will be 100 times more sensitive than current instruments. Like the first two generations of GW detectors, it is based on the measurement of tiny changes (far less than the size of an atomic nucleus) in the lengths of two connected arms several kilometres long, caused by a passing gravity wave. Laser beams passing down the arms record their periodic stretching and shrinking as interference patterns in a central photo-detector.

The first generation of these interferometric detectors built a few years ago (GEO600, LIGO, Virgo and TAMA) successfully demonstrated the proof-of-principle and constrained the gravitational wave emission from several sources. The next generation (Advanced LIGO and Advanced Virgo), which are being constructed now, should make the first direct detection of gravitational waves – for example, from a pair of orbiting black holes or neutron stars spiralling into each other. Such a discovery would herald the new field of GW astronomy. However, these detectors will not be sensitive enough for precise astronomical studies of the GW sources.

“The community of scientists interested in exploring GW phenomena therefore decided to investigate building a new generation of even more sensitive observatories. After a three-year study, involving more than 200 scientists in Europe and across the world, we are pleased to present the design study for the Einstein Telescope, which paves the way for unveiling a hidden side of the Universe,” says Harald Lück, deputy scientific coordinator of the ET Design Study.

The design study, which will be presented at the European Gravitational Observatory site in Pisa, Italy, outlines ET’s scientific targets, the detector layout and technology, as well as the timescale and estimated costs. I A superb sensitivity will be achieved by building ET underground, at a depth of about 100 to 200 metres, to reduce the effect of the residual seismic motion. This will enable higher sensitivities to be achieved at low frequencies, between 1 and 100 hertz (Hz). With ET, the entire range of GW frequencies that can be measured on Earth – between about 1 Hz and 10 kHz – should be detected. “An observatory achieving that level of sensitivity will turn GW detection into a routine astronomical tool. ET will lead a scientific revolution”, says Michele Punturo, the scientific coordinator of the design study. An important aim is to provide GW information that complements observational data from telescopes detecting electromagnetic radiation (from radio waves through to gamma-rays) and other instruments detecting high-energy particles from space (astroparticle physics).

A multi-detector
The strategy behind the ET project is to build an observatory that overcomes the limitations of current detector sites by hosting more than one GW detector. It will consist of three nested detectors, each composed of two interferometers with arms 10 kilometres long. One interferometer will detect low-frequency gravitational wave signals (2 to 40 Hz), while the other will detect the high-frequency components. The configuration is designed to allow the observatory to evolve by accommodating successive upgrades or replacement components that can take advantage of future developments in interferometry and also respond to a variety of science objectives.
The European dimension
The European Commission supported the design study within the Seventh Framework Program (FP7-Capacities) by allocating three million Euro.

“With this grant, the European Commission recognized the importance of gravitational wave science as developed in Europe, its value for fundamental and technological research, provided a common framework for the European scientists involved in the gravitational wave search and allowed for a significant step towards the exploration of the Universe with a completely new enquiry instrument”, says Federico Ferrini, director of the European Gravitational Observatory (EGO) and project coordinator of the design study for the Einstein Telescope.

ET is one of the 'Magnificent Seven' European projects recommended by the ASPERA network for the future development of astroparticle physics in Europe. It would be a crucial European research infrastructure and a fundamental cornerstone in the realisation of the European Research Area.

Further information: http://bit.ly/EinsteinTelescope

Images and movies: http://www.et-gw.eu/etimages

Note for editors:
ASPERA, the AStroParticle European Research Area is a network of European national funding agencies responsible for astroparticle physics. ASPERA is funded by the European Commission, bringing together 17 countries and CERN (European Organization for Nuclear Research): http://www.aspera-eu.org

The Einstein Telescope Project (ET) is a joint project of eight European research institutes, under the direction of the European Gravitational Observatory (EGO). The participants are EGO, an Italian French consortium located near Pisa (Italy), Istituto Nazionale di Fisica Nucleare (INFN) in Italy, the French Centre National de la Recherche Scientifique (CNRS), the German Albert Einstein Institute (AEI) in Hannover, the Universities of Birmingham, Cardiff and Glasgow in the UK, and the Dutch Nikhef in Amsterdam. Scientists belonging to other institutions in Europe, as well as the US and Japan, actively collaborated in the realisation of this design study.

Arnaud Marsollier | Newswise Science News
Further information:
http://www.cern.ch

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>