Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planets around stars are the rule rather than the exception

13.01.2012
There are more exoplanets further away from their parent stars than originally thought, according to new astrophysics research.

In a new paper appearing in the Jan. 12 edition of the journal, Nature, astrophysicist Kem Cook as part of an international collaboration, analyzed microlensing data that bridges the gap between a recent finding of planets further away from their parent stars and observations of planets extremely close to their parent star. The results point to more planetary systems resembling our solar system rather than being significantly different.


Gravitational microlensing occurs when light from a source star is bent and focused by gravity as a second object (the lens star) passes between the source star and an observer on Earth. A planet rotating around the lens star will produce an additional deviation in the microlensing. Image courtesy of the Space Telescope Science Institute.

Gravitational microlensing occurs when light from a source star is bent and focused by gravity as a second object (the lens star), which passes between the source star and an observer on Earth. A planet rotating around the lens star will produce an additional deviation in the microlensing. The first gravitational microlensing observations were made by the Massive Astrophysical Compact Halo Object (MACHO) collaboration, led by Livermore scientists.

The new research also determines that a large fraction of planets have orbital distances from 0.5 to 10 sun-Earth distances. In the past, using the Doppler shift technique, most extrasolar planets found were gas giants like Jupiter and Saturn that orbited stars that were much closer to them than the sun is to Earth.

An exoplanet is a planet outside our solar system. Over the past 16 years, astronomers have detected more than 700 confirmed exoplanets and have started to probe the spectra and atmospheres of these worlds. While studying the properties of individual exoplanets is undeniably valuable, a much more basic question remains: how commonplace are planets in the Milky Way?

The team found that approximately 17 percent of stars host Jupiter-mass planets. However, cool-Neptunes and super-Earths are more common, occurring 52 percent and 62 percent, respectively, of the time.

Gravitationally microlensing is very rare. In fact, fewer stars than one per million undergo micolensing at any time.

The team's result is consistent with every star of the Milky Way, hosting, on average, one planet or more in an orbital distance range of 0.5 to 10 sun-Earth distances.

"Our measurements confirm that low-mass planets are very common and the number of planets increases with decreasing planet mass, in an agreement with the predictions of the core accretion scenario of planet formation," Cook said. "Planets around stars in our galaxy appear to be the rule rather than the exception."

"We used to think that the Earth might be unique in our galaxy. But now it seems that there are literally billions of planets with masses similar to Earth orbiting stars in the Milky Way," concludes Daniel Kuba, of the European Southern Observatory and co-lead author of the paper.

More Information
"Planets and stars under the magnifying glass," Science & Technology Review, July/August 2006

"Astronomers discover two planets similar to Jupiter and Saturn," Newsline, Feb. 15, 2008

"Astronomers discover distant, icy Earth-like planet," LLNL news release, Jan. 25, 2006

Massive Compact Halo Objects (MACHO) project

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>